1.什么是图像二值化

彩色图像: 有blue,green,red三个通道,取值范围均为0-255

灰度图:只有一个通道0-255,所以一共有256种颜色

二值图像:只有两种颜色,黑色和白色,二值化就是把图像的像素转变为0或者255,只有这两个像素值。0白色 1黑色 。0是黑色,255是白色。

2.图像二值化

(1)先获取阈值

(2)根据阈值去二值化图

(3)threshold函数

ret, dst = cv2.threshold(src, thresh, maxval, type)
  • src: 输入图,只能输入单通道图像,通常来说为灰度图
  • dst: 输出图
  • thresh: 阈值
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

(4)全局阈值 -代码实现

 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #图像二值化 0白色 1黑色
7 #全局阈值
8 def threshold_image(image):
9 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
10 cv.imshow("原来", gray)
11
12 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
13 print("阈值:%s" % ret)
14 cv.imshow("OTSU", binary)
15
16 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
17 print("阈值:%s" % ret)
18 cv.imshow("TRIANGLE", binary)
19
20 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
21 print("阈值:%s" % ret)
22 cv.imshow("自定义", binary)
23
24 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
25 print("阈值:%s" % ret)
26 cv.imshow("自定义反色", binary)
27
28 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TRUNC)# 截断 大于150的是改为150 小于150的保留
29 print("阈值:%s" % ret)
30 cv.imshow("截断1", binary)
31
32 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TOZERO)# 截断 小于150的是改为150 大于150的保留
33 print("阈值:%s" % ret)
34 cv.imshow("截断2", binary)
35
36 src = cv.imread("C://1.jpg")
37 threshold_image(src)
38 cv.waitKey(0)
39 cv.destroyAllWindows()

函数threshold()的参数说明:

cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
    cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
    cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
    cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
    cv.THRESH_TRUNC)# 截断 大于150的是改为150  小于150的保留

cv.THRESH_TOZERO)# 截断 小于150的是改为150  大于150的保留

(5)局部阈值 -代码实现

自适应阈值二值化函数根据图片一小块区域的值来计算对应区域的阈值,从而得到也许更为合适的图片。

dst = cv2.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)
  • src: 输入图,只能输入单通道图像,通常来说为灰度图
  • dst: 输出图
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • thresh_type: 阈值的计算方法,包含以下2种类型:cv2.ADAPTIVE_THRESH_MEAN_C; cv2.ADAPTIVE_THRESH_GAUSSIAN_C.
  • type:二值化操作的类型,与固定阈值函数相同,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV.
  • Block Size: 图片中分块的大小,必须为奇数
  • C :阈值计算方法中的常数项
1 #局部阈值
2 def local_image(image):
3 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
4 cv.imshow("原来", gray)
5 binary1 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 25, 10) #blocksize必须为奇数
6 cv.imshow("局部1", binary1)
7 binary2 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)#高斯处理
8 cv.imshow("局部2", binary2)

(6)自己计算阈值-代码实现

图像的长宽以及灰度、RGB图像的像素原理分布

https://blog.csdn.net/qq_29540745/article/details/70256722

 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #求出图像均值作为阈值来二值化
7 def custom_image(image):
8 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
9 cv.imshow("原来", gray)
10 h, w = gray.shape[:2]
11 m = np.reshape(gray, [1, w*h])#化为一维数组
12 mean = m.sum() / (w*h)
13 print("mean: ", mean)
14 ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
15 cv.imshow("二值", binary)
16
17
18 src = cv.imread("C://1.jpg")
19 custom_image(src)
20 cv.waitKey(0)
21 cv.destroyAllWindows()

参考:

https://blog.csdn.net/u011321546/article/details/79593195

https://blog.csdn.net/Vici__/article/details/100714822#15%E3%80%81%E4%BA%8C%E5%80%BC%E5%8C%96%EF%BC%88cv2.threshold%EF%BC%89

https://www.cnblogs.com/ssyfj/p/9272615.html

 

python实现图像二值化的更多相关文章

  1. opencv python:图像二值化

    import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...

  2. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

  3. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  4. 致敬学长!J20航模遥控器开源项目计划【开局篇】 | 先做一个开机界面 | MATLAB图像二值化 | Img2Lcd图片取模 | OLED显示图片

    我们的开源宗旨:自由 协调 开放 合作 共享 拥抱开源,丰富国内开源生态,开展多人运动,欢迎加入我们哈~ 和一群志同道合的人,做自己所热爱的事! 项目开源地址:https://github.com/C ...

  5. C# 指针操作图像 二值化处理

    /// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...

  6. openCV_java 图像二值化

    较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...

  7. MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)

    图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口 ...

  8. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  9. Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化  [函数名称]   P分位法图像二值化 [算法说明]   所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...

随机推荐

  1. HTML(思维导图)

  2. Go语言之循环与条件判断

    一.for循环 Go 语言中没有 while 循环,只有一个 for 循环 for 变量初始化;条件;变量自增/自减 { 循环体内容 } 1.基本使用 for i := 0; i < 10; i ...

  3. CAD图DWG解析WebGIS可视化技术分析总结

    背景 AutoCAD是国际上著名的二维和三维CAD设计软件,用于二维绘图.详细绘制.设计文档和基本三维设计.现已经成为国际上广为流行的绘图工具..dwg文件格式成为二维绘图的事实标准格式. 但由于Au ...

  4. 01_vue实例_数据_方法

    创建实例 var vm = new Vue( { //选项 } ) 数据对象 // 我们的数据对象 var data = { a: 1 } // 该对象被加入到一个 Vue 实例中 var vm = ...

  5. pycharm设置文件中显示模板内容

    pycharm中设置自己的文件模板  File>>Settings>>Editor>>File and Code Templates 选择文件类型或者输入文件类型 ...

  6. FastAPI 学习之路(十四)响应模型

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  7. 微服务网关Ocelot加入IdentityServer4鉴权-.NetCore(.NET5)中使用

    Consul+Ocelot+Polly在.NetCore中使用(.NET5)-Consul服务注册,服务发现 Consul+Ocelot+Polly在.NetCore中使用(.NET5)-网关Ocel ...

  8. airtest常用指令

    airtest 操作adb命令   常用adb 1)对特定设备执行adb指令 dev = connect_device("Android:///device1") dev.shel ...

  9. 你知道什么是JUC了吗?

    多线程一直Java开发中的难点,也是面试中的常客,趁着还有时间,打算巩固一下JUC方面知识,我想机会随处可见,但始终都是留给有准备的人的,希望我们都能加油!!! 沉下去,再浮上来,我想我们会变的不一样 ...

  10. vs2017和Qt5的字符编码问题

    默认vs2017的源文件字符编码是gbk的格式,Qt5的内部字符编码为utf8的格式,Qt5又去掉了设置字符串的接口,这样在源文件中使用了字符串之后,就会出现乱码问题,对原有代码逐个修改字符串是不可能 ...