python实现图像二值化
1.什么是图像二值化
彩色图像: 有blue,green,red三个通道,取值范围均为0-255
灰度图:只有一个通道0-255,所以一共有256种颜色
二值图像:只有两种颜色,黑色和白色,二值化就是把图像的像素转变为0或者255,只有这两个像素值。0白色 1黑色 。0是黑色,255是白色。
2.图像二值化
(1)先获取阈值
(2)根据阈值去二值化图
(3)threshold函数
ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
(4)全局阈值 -代码实现
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #图像二值化 0白色 1黑色
7 #全局阈值
8 def threshold_image(image):
9 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
10 cv.imshow("原来", gray)
11
12 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
13 print("阈值:%s" % ret)
14 cv.imshow("OTSU", binary)
15
16 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
17 print("阈值:%s" % ret)
18 cv.imshow("TRIANGLE", binary)
19
20 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
21 print("阈值:%s" % ret)
22 cv.imshow("自定义", binary)
23
24 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
25 print("阈值:%s" % ret)
26 cv.imshow("自定义反色", binary)
27
28 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TRUNC)# 截断 大于150的是改为150 小于150的保留
29 print("阈值:%s" % ret)
30 cv.imshow("截断1", binary)
31
32 ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TOZERO)# 截断 小于150的是改为150 大于150的保留
33 print("阈值:%s" % ret)
34 cv.imshow("截断2", binary)
35
36 src = cv.imread("C://1.jpg")
37 threshold_image(src)
38 cv.waitKey(0)
39 cv.destroyAllWindows()
函数threshold()的参数说明:
cv.THRESH_BINARY | cv.THRESH_OTSU)#大律法,全局自适应阈值 参数0可改为任意数字但不起作用
cv.THRESH_BINARY | cv.THRESH_TRIANGLE)#TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
cv.THRESH_BINARY)# 自定义阈值为150,大于150的是白色 小于的是黑色
cv.THRESH_BINARY_INV)# 自定义阈值为150,大于150的是黑色 小于的是白色
cv.THRESH_TRUNC)# 截断 大于150的是改为150 小于150的保留
cv.THRESH_TOZERO)# 截断 小于150的是改为150 大于150的保留
(5)局部阈值 -代码实现
自适应阈值二值化函数根据图片一小块区域的值来计算对应区域的阈值,从而得到也许更为合适的图片。
dst = cv2.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- thresh_type: 阈值的计算方法,包含以下2种类型:cv2.ADAPTIVE_THRESH_MEAN_C; cv2.ADAPTIVE_THRESH_GAUSSIAN_C.
- type:二值化操作的类型,与固定阈值函数相同,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV.
- Block Size: 图片中分块的大小,必须为奇数
- C :阈值计算方法中的常数项
1 #局部阈值
2 def local_image(image):
3 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
4 cv.imshow("原来", gray)
5 binary1 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 25, 10) #blocksize必须为奇数
6 cv.imshow("局部1", binary1)
7 binary2 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)#高斯处理
8 cv.imshow("局部2", binary2)
(6)自己计算阈值-代码实现
图像的长宽以及灰度、RGB图像的像素原理分布
https://blog.csdn.net/qq_29540745/article/details/70256722
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #求出图像均值作为阈值来二值化
7 def custom_image(image):
8 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
9 cv.imshow("原来", gray)
10 h, w = gray.shape[:2]
11 m = np.reshape(gray, [1, w*h])#化为一维数组
12 mean = m.sum() / (w*h)
13 print("mean: ", mean)
14 ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
15 cv.imshow("二值", binary)
16
17
18 src = cv.imread("C://1.jpg")
19 custom_image(src)
20 cv.waitKey(0)
21 cv.destroyAllWindows()
参考:
https://blog.csdn.net/u011321546/article/details/79593195
https://www.cnblogs.com/ssyfj/p/9272615.html
python实现图像二值化的更多相关文章
- opencv python:图像二值化
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...
- Python+OpenCV图像处理(十)—— 图像二值化
简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...
- [python-opencv]图像二值化【图像阈值】
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...
- 致敬学长!J20航模遥控器开源项目计划【开局篇】 | 先做一个开机界面 | MATLAB图像二值化 | Img2Lcd图片取模 | OLED显示图片
我们的开源宗旨:自由 协调 开放 合作 共享 拥抱开源,丰富国内开源生态,开展多人运动,欢迎加入我们哈~ 和一群志同道合的人,做自己所热爱的事! 项目开源地址:https://github.com/C ...
- C# 指针操作图像 二值化处理
/// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...
- openCV_java 图像二值化
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...
- MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)
图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口 ...
- OpenCV_基于局部自适应阈值的图像二值化
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...
- Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化
原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化 [函数名称] P分位法图像二值化 [算法说明] 所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...
随机推荐
- Android12系统源码分析:NativeTombstoneManager
Android12系统源码分析:NativeTombstoneManager 概述 android12新增的system_server进程(LocalService)本地服务,用于管理native t ...
- MYSQL小版本升级(5.7.21至5.7.25)
1.环境确认 [root@mysql ~]# ps -ef |grep -i mysql root 9173 1 0 2020 ? 00:00:00 /bin/sh /mysql/data/mysql ...
- 拥抱开源,共建生态 - 开源生态与效能提升专场 | CIF 精彩看点
随着软件技术日新月异的发展,GitHub 已经进化成为人类软件的基因库,遇到问题第一时间在 GitHub 上寻求合适的解决方案,已经逐渐变成工程师处理问题的常见方法.据 GitHub 年度报告显示,2 ...
- Jekins 插件Extended Choice Parameter显示Json Parameter Type遇到的问题
在jenkins中使用Extended Choice Parameter插件用来显示自定义的多选项,尝试通过groovy script来显示,正常,但查看它的例子,发现它例子中多选是通过类型 Json ...
- ssh 批量免密登陆
SSH第一次连接远程主机 公钥交换原理 1.客户端发起链接请求2.服务端返回自己的公钥,以及一个会话ID(这一步客户端得到服务端公钥)3.客户端生成密钥对4.客户端用自己的公钥异或会话ID,计算出一个 ...
- 洛谷5038 [SCOI2012]奇怪的游戏(二分+网络流+判断奇偶)
寒假的时候就听过这个题.但是一直没有写. qwq 首先,我们发现题目中的图是个网格图,然后每次可以将相邻两个格子加一. 很容易就想到是黑白染色.那么每次操作,就相当于同时操作一个白点,一个黑点. 我们 ...
- 洛谷3769[CH弱省胡策R2]TATT (KDTree)(四维LIS)
真是一个自闭的题目(调了一个上午+大半个下午) 从\(WA\)到\(WA+TLE\)到\(TLE\)到\(AC\) 真的艰辛. 首先,这个题,我们可以考虑直接上四维KDTree来解决. 对于kdtre ...
- bzoj1407,洛谷2421 NOI2002荒岛野人
题目大意: 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞C1,C2,-,CN中,以后每年,第i个野人会沿顺时针向前走P ...
- GoLang设计模式10 - 中介者模式
中介者模式是一种行为型设计模式.在中介者模式中创建了一个中介对象来负责不同类间的通信.因为这些类不需要直接交互,所以也就能避免它们之间的直接依赖,实现解耦的效果. 中介者模式的一个典型案例是老式小火车 ...
- Appium iOS 原理
一.iOS Appium 原理 1.1 iOS 9.3 系统之前自动化测试 1.1.1 Native 自动化 这是 iOS 9.3 系统之前自动化测试的架构模式.通过 Android Appium 原 ...