不妨先操作一轮,使得$0\le a_{i}\le 2$

结论:若序列中存在1,则答案为0或1

考虑归纳,注意到若序列中存在1,除非所有元素均为1,否则操作一轮后必然仍存在1,那么根据归纳假设即成立,而当所有元素均为1时,显然答案一定为0或1(序列长度已经为1),同样成立

由此,实际上只需要通过奇偶性即可确定答案,而注意到$|x-y|\equiv x+y(mod\ 2)$,因此不妨将转移的式子变为$a'_{i}=a_{i}+a_{i+1}$(模2意义下)

简单计数,不难发现$a_{i}$对答案的贡献即${n-1\choose i-1}a_{i}$,求出其模2的值并相加即可

另外,如果序列中不存在1,分类讨论:

1.若序列中不存在2,显然答案即为0

2.若序列中存在2,不妨将所有$a_{i}$除以2后求出答案,再将答案乘上2即可

时间复杂度为$o(n)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 int n,a[N];
5 char s[N];
6 int C(int n,int m){
7 return (n&m)==m;
8 }
9 int calc(){
10 int ans=0;
11 for(int i=1;i<=n;i++)
12 if (a[i]&1)ans^=C(n-1,i-1);
13 return ans;
14 }
15 int main(){
16 scanf("%d%s",&n,s+1);
17 n--;
18 for(int i=1;i<=n;i++)a[i]=abs((int)s[i]-(int)s[i+1]);
19 bool flag=0;
20 for(int i=1;i<=n;i++)
21 if (a[i]==1)flag=1;
22 if (flag)printf("%d\n",calc());
23 else{
24 flag=0;
25 for(int i=1;i<=n;i++)
26 if (a[i]==2)flag=1;
27 if (!flag)printf("0\n");
28 else{
29 for(int i=1;i<=n;i++)a[i]>>=1;
30 printf("%d\n",(calc()<<1));
31 }
32 }
33 return 0;
34 }

[atAGC043B]123 Triangle的更多相关文章

  1. 二分--1043 - Triangle Partitioning

    1043 - Triangle Partitioning PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit:  ...

  2. 1043 - Triangle Partitioning(数学)

    1043 - Triangle Partitioning   PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit ...

  3. Entity Framework 6 Recipes 2nd Edition(12-3)译 -> 数据库连接日志

    12-3. 数据库连接日志 问题 你想为每次与数据库的连接和断开记录日志 解决方案 EF为DbContext的连接公开了一个StateChange 事件.我们需要处理这个事件, 为每次与数据库的连接和 ...

  4. [LeetCode] Triangle 三角形

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  5. [LeetCode] Pascal's Triangle II 杨辉三角之二

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  6. [LeetCode] Pascal's Triangle 杨辉三角

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  7. 【leetcode】Pascal's Triangle II

    题目简述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Retur ...

  8. 【leetcode】Pascal's Triangle

    题目简述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 前端规范之Git工作流规范(Husky + Comminilint + Lint-staged)

    代码规范是软件开发领域经久不衰的话题,几乎所有工程师在开发过程中都会遇到或思考过这一问题.而随着前端应用的大型化和复杂化,越来越多的前端团队也开始重视代码规范.同样,前段时间,笔者所在的团队也开展了一 ...

  2. 怒肝 Linux 学习路线,这回不难

    Linux 学习路线 by 鱼皮. 原创不易,请勿抄袭,违者必究! 大家好,我是鱼皮,又花 1 周肝出了 Linux 学习资料全家桶,包括学习路线.命令手册.视频.书籍.文档.实战教程.社区.工具.大 ...

  3. NOIP 模拟 七十七

    100+60+95+30; T4 一个变量打错挂了40.. T1 最大或 考虑从高到低枚举的二进制位,然后和的对应二进制位进行比较.如果两 者相同,那么不论怎么选择,,答案在这个位置上的值一定和在这个 ...

  4. Dapr + .NET Core实战(十四)虚拟机集群部署 mDNS + Consul

    前面我们说了在单机模式下和K8S集群下的Dapr实战,这次我们来看看如何在不使用K8S的情况下,在一个传统的虚拟机集群里来部署Dapr. 1.环境准备 我们准备两台centos7虚拟机 Dapr1:1 ...

  5. 【Java虚拟机4】Java内存模型(硬件层面的并发优化基础知识--缓存一致性问题)

    前言 今天学习了Java内存模型第一课的视频,讲了硬件层面的知识,还是和大学时一样,醍醐灌顶.老师讲得太好了. Java内存模型,感觉以前学得比较抽象.很繁杂,抽象. 这次试着系统一点跟着2个老师学习 ...

  6. 软件案例分析——VS、VS Code

    软件案例分析--VS和VS Code 第一部分 调研,测评 一.使用10–30分钟这个软件的基本功能(请上传使用软件的照片) VS code Visual Studio 二.主要功能和目标用户有何不同 ...

  7. Spring Cloud Alibaba整合Sentinel

    Spring Cloud Alibaba 整合 Sentinel 一.需求 二.实现步骤 1.下载 sentinel dashboard 2.服务提供者和消费者引入sentinel依赖 3.配置控制台 ...

  8. Noip模拟6 2021.6.10

    T1 辣鸡 首先吐嘈一下,这题的测试点就离谱,不说了,附上我65分代码: 1 #include<bits/stdc++.h> 2 #define int long long 3 using ...

  9. 关于linux下编译的几点知识

    1.-L.-rpath 和 rpath_link的区别 参考博客文章:https://www.cnblogs.com/candl/p/7358384.html (1)-rpath和-rpath-lin ...

  10. C++链表常见面试考点

    链表常见问题: 单链表找到倒数第n个节点 用两个指针指向链表头,第一个指针先向前走n步,然后两个指针同步往前走,当第一个指针指向最后一个节点时,第二个指针就指向了倒数第n个节点. 判断链表有没有环 快 ...