本文将同步发布于:

题目

题目链接:洛谷 AT4695AtCoder agc031_e

题意简述

在二维平面上,有 \(n\) 颗珠宝,第 \(i\) 颗珠宝在 \((x_i,y_i)\) 的位置,价值为 \(v_i\)。

现在有一个盗贼想要偷这些珠宝。

现在给出 \(m\) 个限制约束偷的珠宝,约束有以下四种:

  • 横坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 横坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 纵坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。
  • 纵坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗。

现在问你在满足这些约束的条件下,盗贼偷的珠宝的最大价值和是多少。

题解

约束与转化

这个约束有点难办,似乎并没有可能对其进行动态规划,因此我们考虑额外添加信息。

我们添加什么信息呢?考虑到限制是有关珠宝数量的,我们决定添加一个 偷珠宝的总数 的信息。

设偷珠宝 \(k\) 颗,并且珠宝按照的横坐标排序被偷的顺序编号为 \(1\sim k\),那么前两种限制条件转化如下:

  • 横坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[b_i+1,k]\),那么一定有 \(x_{\texttt{id}}>a_i\)。
  • 横坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[1,k-b_i]\),那么一定有 \(x_{\texttt{id}}<a_i\)。

同理,我们可以得出珠宝按照的纵坐标排序被偷的顺序编号为 \(1\sim k\),那么后两种限制条件转化如下:

  • 纵坐标小于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[b_i+1,k]\),那么一定有 \(y_{\texttt{id}}>a_i\)。
  • 纵坐标大于等于 \(a_i\) 的珠宝最多偷 \(b_i\) 颗:

    若一个珠宝的编号 \(\texttt{id}\in[1,k-b_i]\),那么一定有 \(y_{\texttt{id}}<a_i\)。

因此,我们得出,一个珠宝想要在按横坐标排序为第 \(i\),纵坐标排序为第 \(j\) 时被偷,需要满足的坐标范围。

化腐朽为神奇的网络流

考虑上面的条件也不是很好动态规划,我们需要想到一种化腐朽为神奇的算法——网络流。

由于这个题目有多个互不相关的限制:

  • 珠宝不能同时被偷两次及以上;
  • 偷的珠宝价值要最大化;

我们考虑运用费用流建立网络流模型。

因为我们要限制横坐标,所以必须要有 \(k\) 个横坐标的限制,对应 \(s\to p_{1\sim k}\),流量为 \(1\),费用为 \(0\)。。

因为我们要限制纵坐标,所以必须要有 \(k\) 个纵坐标的限制,对应 \(q_{1\sim k}\to t\),流量为 \(1\),费用为 \(0\)。

因为我们要限制一个点不能被选择多次,所以我们需要拆点限流,对应 \(a_{1\sim n}\to b_{1\sim n}\),流量为 \(1\),费用为 \(v_i\)。

考虑到我们上面需要满足的限制,按照限制加边 \(p_i\to a_j\) 和 \(b_j\to q_i\) 即可,流量为 \(1\),费用为 \(0\)。

如果上面的语言有点抽象,我们不妨画图理解。

整个建图如上所示,点数为 \(\Theta(n^2)\),边数 \(\Theta(n^2)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
static char buf[1<<21],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline int max(reg int a,reg int b){
return a>b?a:b;
} inline int min(reg int a,reg int b){
return a<b?a:b;
} inline ll max(reg ll a,reg ll b){
return a>b?a:b;
} const int MAXN=80+5;
const int MAXM=320+5;
const int inf=0x3f3f3f3f; namespace Network{
const int MAXV=4*MAXN;
const int MAXE=(MAXN*MAXN*2+3*MAXN)*2;
const ll inf=0x3f3f3f3f3f3f3f3f;
int cnt,head[MAXV],to[MAXE],w[MAXE],Next[MAXE];
ll p[MAXE];
inline void Add_Edge(reg int u,reg int v,reg int len,reg ll val){
Next[++cnt]=head[u];
to[cnt]=v,w[cnt]=len,p[cnt]=val;
head[u]=cnt;
return;
}
inline void Add_Tube(reg int u,reg int v,reg int len,reg ll val){
Add_Edge(u,v,len,val);
Add_Edge(v,u,0,-val);
return;
}
bool inque[MAXV];
int cur[MAXV];
ll dis[MAXV];
queue<int> Q;
inline bool spfa(int s,reg int t){
fill(dis+s,dis+t+1,inf);
inque[s]=true,dis[s]=0,Q.push(s);
while(!Q.empty()){
reg int u=Q.front();
Q.pop();
inque[u]=false;
cur[u]=head[u];
for(reg int i=head[u];i;i=Next[i]){
int v=to[i];
if(dis[v]>dis[u]+p[i]&&w[i]){
dis[v]=dis[u]+p[i];
if(!inque[v]){
inque[v]=true;
Q.push(v);
}
}
}
}
return dis[t]!=inf;
}
bool vis[MAXV];
inline int dfs(reg int u,reg int t,reg ll lim){
if(u==t)
return lim;
vis[u]=true;
reg int flow=0;
for(reg int &i=cur[u];i;i=Next[i]){
reg int v=to[i];
if(dis[v]==dis[u]+p[i]&&w[i]&&!vis[v]){
reg int f=dfs(v,t,min(lim-flow,w[i]));
if(f){
flow+=f;
w[i]-=f,w[i^1]+=f;
if(flow==lim)
break;
}
}
}
vis[u]=false;
return flow;
}
inline pair<int,ll> dinic(reg int s,reg int t){
int res=0;
ll cost=0;
while(spfa(s,t)){
reg int flow=dfs(s,t,inf);
res+=flow,cost+=flow*dis[t];
}
return make_pair(res,cost);
}
inline void init(reg int s,reg int t){
cnt=1,fill(head+s,head+t+1,0);
return;
}
} struct Point{
int x,y;
ll v;
}; struct Limits{
char ch;
int a,b;
}; struct Interval{
int l,r;
inline Interval(reg int l=0,reg int r=0):l(l),r(r){
return;
}
inline bool in(reg int x)const{
return l<=x&&x<=r;
}
}; inline Interval cap(const Interval& a,const Interval& b){
return Interval(max(a.l,b.l),min(a.r,b.r));
} int n,m;
Point a[MAXN];
Limits b[MAXM]; int main(void){
n=read();
for(reg int i=1;i<=n;++i)
a[i].x=read(),a[i].y=read(),a[i].v=readll();
m=read();
for(reg int i=1;i<=m;++i){
do
b[i].ch=getchar();
while(!isalpha(b[i].ch));
b[i].a=read(),b[i].b=read();
}
reg ll ans=0;
for(reg int k=1;k<=n;++k){
static Interval invx[MAXN],invy[MAXN];
fill(invx+1,invx+k+1,Interval(-inf,inf));
fill(invy+1,invy+k+1,Interval(-inf,inf));
for(reg int i=1;i<=m;++i){
switch(b[i].ch){
case 'L':{
for(reg int j=b[i].b+1;j<=k;++j)
invx[j]=cap(invx[j],Interval(b[i].a+1,inf));
break;
}
case 'R':{
for(reg int j=1;j<=k-b[i].b;++j)
invx[j]=cap(invx[j],Interval(-inf,b[i].a-1));
break;
}
case 'D':{
for(reg int j=b[i].b+1;j<=k;++j)
invy[j]=cap(invy[j],Interval(b[i].a+1,inf));
break;
}
case 'U':{
for(reg int j=1;j<=k-b[i].b;++j)
invy[j]=cap(invy[j],Interval(-inf,b[i].a-1));
break;
}
}
}
reg int s=0,t=2*k+2*n+1;
Network::init(s,t);
for(reg int i=1;i<=k;++i){
Network::Add_Tube(s,i,1,0);
Network::Add_Tube(k+n+n+i,t,1,0);
}
for(reg int i=1;i<=n;++i)
Network::Add_Tube(k+i,k+n+i,1,-a[i].v);
for(reg int i=1;i<=k;++i)
for(reg int j=1;j<=n;++j){
if(invx[i].in(a[j].x))
Network::Add_Tube(i,k+j,1,0);
if(invy[i].in(a[j].y))
Network::Add_Tube(k+n+j,k+n+n+i,1,0);
}
pair<int,ll> res=Network::dinic(s,t);
if(res.first==k)
ans=max(ans,-res.second);
}
printf("%lld\n",ans);
return 0;
}

「题解」agc031_e Snuke the Phantom Thief的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. DLL注入-APC注入

    APC注入 APC注入的原理是利用当线程被唤醒时APC中的注册函数会被执行的机制,并以此去执行我们的DLL加载代码,进而完成DLL注入的目的,其具体流程如下:     1)当EXE里某个线程执行到Sl ...

  2. (Py练习)输出乘法口诀表

    #输出9*9乘法口诀表 for i in range(1,10): for j in range(1,i+1): print("%d*%d=%2d"%(i,j,i*j),end = ...

  3. CCNA 第三章 TCP/IP简介

    1:DoD模型和OSI模型 2:TCP和UDP的重要特性 3:IP编址: (1):A类地址: 第一字节第一位必须为0,即:0xxxxxxx,取值范围:00000000-011111111:0-127, ...

  4. BD-rate的计算

    相信不少接触视频编码的朋友在看相关的文献的时候,总会看到论文中测试时给出一个重要的参数BD-rate,可能一直心存疑问,这个BD-rate到底是个什么东西呢?可以参考这一份提案http://downl ...

  5. Ribbon导航

    简介 最近都在弄微服务的东西,现在来记录下收获.我从一知半解到现在能从0搭建使用最大的感触有两点 1.微服务各大组件的版本很多,网上很多博客内容不一定适合你的版本,很多时候苦苦琢磨都是无用功 2.网上 ...

  6. 在python的class中的,self到底是什么?

    答案:self可以理解为一个字典变量,内部存的就是对象的数据属性.如:{'name':'zhang','age':'18'}就是这些. 注意只有数据属性,并没有创建新的类的方法.  类-----> ...

  7. 【转载】认识SSD的SATA、mSATA 、PCIe和M.2四种主流接口

    认识SSD的SATA.mSATA .PCIe和M.2四种主流接口 2018-09-25 • 工具 • 评论关闭 认识SSD的SATA.mSATA .PCIe和M.2四种主流接口

  8. 使用nmcli命令配置网络

    !!!前言 nmcli是redhat7或者centos7之后的命令该命令可以完成网卡上所有的配置工作,并且可以写入配置文件,永久生效 1.NetworkManager NetworkManager是管 ...

  9. 11.19 rpm:RPM包管理器

    rpm命令的全称是Red Hat Package Manager(Red Hat包管理器),几乎所有的Linux发行版本都使用了这种形式的命令管理.安装.更新和卸载软件. 概括地说,rpm命令包含了五 ...

  10. 3.14-19 wc、iconv、dos2unix、diff、vimdiff、rev

    3.14 wc:统计文件的行数.单词数或字节数 wc命令用于统计文件的行数.单词数或字节数.   -c 统计字节数 -w 统计单词数 -l 统计行数     -L 打印最长行的长度 -m 统计字符数 ...