矩阵乘法

这是使用CUDA内核的矩阵乘法的简单实现:

@cuda.jit

def matmul(A, B, C):

"""Perform square matrix multiplication of C = A * B

    """

i, j = cuda.grid(2)

if i < C.shape[0] and j < C.shape[1]:

tmp = 0.

for k in range(A.shape[1]):

tmp += A[i, k] * B[k, j]

C[i, j] = tmp

这种实现方式简单直观,但性能不佳,因为相同的矩阵元素将从设备内存中多次加载,这很慢(某些设备可能具有透明的数据缓存,但它们可能不足以一次容纳整个输入)。

如果使用阻塞算法来减少对设备内存的访问,它将更快。CUDA为 块中的线程提供快速共享内存,以协作执行任务。以下使用共享内存实现了方阵乘法的更快版本:

from numba import cuda, float32

# Controls threads per block and shared memory usage.

# The computation will be done on blocks of TPBxTPB elements.

TPB = 16

@cuda.jit

def fast_matmul(A, B, C):

# Define an array in the shared memory

# The size and type of the arrays must be known at compile time

sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

x, y = cuda.grid(2)

tx = cuda.threadIdx.x

ty = cuda.threadIdx.y

bpg = cuda.gridDim.x    # blocks per grid

if x >= C.shape[0] and y >= C.shape[1]:

# Quit if (x, y) is outside of valid C boundary

return

# Each thread computes one element in the result matrix.

# The dot product is chunked into dot products of TPB-long vectors.

tmp = 0.

for i in range(bpg):

# Preload data into shared memory

sA[tx, ty] = A[x, ty + i * TPB]

sB[tx, ty] = B[tx + i * TPB, y]

# Wait until all threads finish preloading

cuda.syncthreads()

# Computes partial product on the shared memory

for j in range(TPB):

tmp += sA[tx, j] * sB[j, ty]

# Wait until all threads finish computing

cuda.syncthreads()

C[x, y] = tmp

因为共享内存是有限的资源,所以代码一次从输入数组中预加载小块。然后,调用 syncthreads()以等待所有线程完成预加载,再对共享内存进行计算。计算之后,再次同步,以确保所有线程在共享内存中的数据均已完成之后,在下一个循环迭代中将其覆盖。

适用于CUDA GPU的Numba例子的更多相关文章

  1. 适用于CUDA GPU的Numba 随机数生成

    适用于CUDA GPU的Numba 随机数生成 随机数生成 Numba提供了可以在GPU上执行的随机数生成算法.由于NVIDIA如何实现cuRAND的技术问题,Numba的GPU随机数生成器并非基于c ...

  2. 适用于AMD ROC GPU的Numba概述

    适用于AMD ROC GPU的Numba概述 Numba通过按照HSA执行模型将Python代码的受限子集直接编译到HSA内核和设备功能中,从而支持AMD ROC GPU编程.用Numba编写的内核似 ...

  3. Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍

    xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...

  4. CUDA ---- GPU架构(Fermi、Kepler)

    GPU架构 SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的. 以Fermi架构为例,其包含以下主要组成部分: CUDA co ...

  5. 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练

    1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...

  6. CUDA && GPU中dim3介绍

  7. 布客&#183;ApacheCN 翻译/校对/笔记整理活动进度公告 2020.1

    注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(52981514 ...

  8. 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】

    本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...

  9. [CUDA] 00 - GPU Driver Installation & Concurrency Programming

    前言 对,这是一个高大上的技术,终于要做老崔当年做过的事情了,生活很传奇. 一.主流 GPU 编程接口 1. CUDA 是英伟达公司推出的,专门针对 N 卡进行 GPU 编程的接口.文档资料很齐全,几 ...

随机推荐

  1. 文档翻译第001篇:Process Monitor帮助文档(Part 1)

    [译者注] Process Monitor是一款非常著名的系统进程监视软件.总体来说,Process Monitor相当于Filemon+Regmon,其中的Filemon专门用来监视系统中所有文件的 ...

  2. CVE-2010-2883:基于样本分析 PDF SING表字符溢出漏洞

    0x01 前言 CVE-2010-2883 漏洞的成因是由于 CoolType.dll 这个动态链接库在解析 SING 表中的 uniqueName 这个项时没有对长度进行限制,导致使用 strcat ...

  3. Win64 驱动内核编程-34.对抗与枚举MiniFilter

    对抗与枚举MiniFilter MiniFilter 是目前杀毒软件用来实现"文件系统自我保护"和"文件实时监控"的方法. 由于 MiniFilter 模型简单 ...

  4. Conda基本使用方法

    anaconda/miniconda的安装 请点击查看我的博客 本教程全部命令操作均在CMD(win).terminal(win).终端(linux/Macos)中执行 使用前配置 因为anacond ...

  5. spring泛型注入

    泛型依赖注入 Spring 4.0版本中更新了很多新功能,其中比较重要的一个就是对带泛型的Bean进行依赖注入的支持. 泛型依赖注入允许我们在使用spring进行依赖注入的同时,利用泛型的优点对代码进 ...

  6. IDEA只有Commit没有Push按钮

    问题描述 idea的右上角只有commit按钮,而没有push按钮 问题解决 打开File->Settings->Menus and Toolbars->Navigation Bar ...

  7. 【easyUI】取消easyui行点击选中事件,智能通过勾选checkbox才能选中行

    背景:项目中使用easyui作为前端架子.datagrid默认是点击行就选中此行然后变色. 需求:点击行不让此行选中:只能通过点击复选框才能选中某一行. 解决思路: 1.写点击行函数function ...

  8. 阿里面试官用HashMap把我问倒了

    本人是一名大三学生,最近在找暑期实习,其中也面试过两次阿里,一次菜鸟网络部门.一次网商银行部门,当然我都失败了,同时也让我印象很深刻,因此记录了其中一些面试心得,我觉得这个问题很值得分享,因此分享给大 ...

  9. 推荐系统论文之序列推荐:KERL

    KERL: A Knowledge-Guided Reinforcement Learning Modelfor Sequential Recommendation 摘要 ‍时序推荐是基于用户的顺序行 ...

  10. Dart 2.13 版现已发布

    作者 / Kevin Moore & Michael Thomsen Dart 2.13 版现已发布,其中新增了类型别名功能,这是目前用户呼声第二高的语言功能.Dart 2.13 还改进了 D ...