B树与B+树不同的地方在于插入是从底向上进行(当然查找与二叉树相同,都是从上往下)

二者都通常用于数据库操作系统文件系统中,非关系型数据库索引如mongoDB用的B树,大部分关系型数据库索引使用的是B+树。

一、B树(也叫B-树,注意并不是读B减树哦)

m阶B树需满足以下要求:

1、m阶B树:m阶指的是分叉的个数最多为m个。即一个非叶子节点最多可以有m个子节点。

2、子节点:一个叉连接的表示一个子节点,如果所示CFJM 表示一个子节点,其中CFJM表示4个元素。一个非叶子节点可以表示为[A0 k1 A1 k2 A2……kn An],其中ceil(m/2) -1 <= k <= m-1个,因此ceil(m/2) <= A <= m,A表示指向子节点的指针。

3、根节点至少有两个子节点

4、所有的叶子在同一层

上图所示并未画出叶子节点,因为叶子结点不包含元素,所以可以把叶子结点看成在树里实际上并不存在外部结点,指向这些外部结点的指针为空,叶子结点的数目正好等于树中所包含的元素总个数加1。下图画出了叶子节点。

B树的特点可以总结为如下:

  1. 元素集合分布在整颗树中。
  2. 任何一个元素出现且只出现在一个节点中。
  3. 搜索有可能在非叶子节点结束。
  4. 因为每个节点中的元素和子树都是有序的其搜索性能等价于在元素集合内做一次二分查找。
  5. B树在插入删除新的数据记录会破坏B-Tree的性质,因为在插入删除时,需要对树进行一个分裂、合并、转移等操作以保持B-Tree性质。

为什么要使用B-树作为数据库索引而不是使用二叉树?

二叉树的搜索效率是十分高的,可以达到logN,但是由于数据量巨大时,索引的大小甚至可以达到G级别,所以索引是存储在磁盘中的,每次查找只能逐一将索引树的节点加载至内存中,如果使用二叉树则I/O操作将会非常频繁,I/O次数取决于二叉树的深度。这样索引速度非常慢,因此采用B树这种多路二叉搜索树大大减少I/O次数。其中多路指的是一个节点有多个子树,并且由于所有叶子节点都在同一层,因此是平衡树。

磁盘页:查询索引时,逐一加载磁盘页,这里的磁盘页对应索引树的节点,对于m阶B树,m的大小取决于磁盘页的大小

 B+树

m阶B树具有以下几个特征:

1、有k个子树的中间节点包含有k个元素(B树中是k-1个),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点中。

2、所有的叶子结点中包含了全部元素的信息,叶子节点本身根据元素的大小顺序链接。

3、所有的中间节点元素都同时存在子节点,在子节点元素中是最大(或最小)元素。

对于根节点中的8,在其子节点中 2 5 8中是最大元素,根节点的最大元素15也是整棵树的最大元素。

什么是卫星数据?

索引元素所指向的数据记录,比如数据库中的某一行。

在B树中无论是中间节点还是叶子节点都带有卫星数据,但是在B+树中只有叶子节点带有卫星数据,中间节点仅仅是索引。左图是B树,右图是B+树。

      

相比B树B+树有以下几点优点:

(1)由于B+树的中间节点没有卫星数据,因此同样大小的磁盘页可以容纳更多的节点元素,即B+树相比B树更加矮胖,因此查询时的I/O次数更少

(2)由于B树在查找时最好情况是根节点,最差情况是叶子节点;B+树都是查找到叶子节点,所以B+树的查找更加稳定

(3)对于范围查找,例如查找3-11之间的所有数据,对于B树,查找下限3,然后中序遍历;对于B+树只需要在叶节点链表上遍历即可,范围查找的效率更高

 数据库中的聚集索引中,叶子节点直接包含卫星数据,在非聚集索引中,叶子节点带有指向卫星数据的指针。

B树和B+树原理图文解析的更多相关文章

  1. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  2. 伸展树(一)之 图文解析 和 C语言的实现

    概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后, ...

  3. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  4. 数据结构图文解析之:树的简介及二叉排序树C++模板实现.

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  5. AVL树(一)之 图文解析 和 C语言的实现

    概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++ ...

  6. 标准Trie字典树学习一:原理解析

    特别声明: 博文主要是学习过程中的知识整理,以便之后的查阅回顾.部分内容来源于网络(如有摘录未标注请指出).内容如有差错,也欢迎指正! 系列文章: 1. 字典树Trie学习一:原理解析 2.字典树Tr ...

  7. 深入解析浏览器的幕后工作原理(三) 呈现树和 DOM 树的关系

    呈现树和 DOM 树的关系 呈现器是和 DOM 元素相对应的,但并非一一对应.非可视化的 DOM 元素不会插入呈现树中,例如"head"元素.如果元素的 display 属性值为& ...

  8. 【浏览器渲染原理】渲染树构建之渲染树和DOM树的关系(转载 学习中。。。)

    在DOM树构建的同时,浏览器会构建渲染树(render tree).渲染树的节点(渲染器),在Gecko中称为frame,而在webkit中称为renderer.渲染器是在文档解析和创建DOM节点后创 ...

  9. B树和B+树的插入、删除图文详解(good)

    B树和B+树的插入.删除图文详解 1. B树 1. B树的定义 B树也称B-树,它是一颗多路平衡查找树.我们描述一颗B树时需要指定它的阶数,阶数表示了一个结点最多有多少个孩子结点,一般用字母m表示阶数 ...

随机推荐

  1. Python基础(__slots__)

    class Point(object): __slots__ = ('name','point') p1 = Point() p1.name = 100 print(p1.name)#100 #p1. ...

  2. Django笔记&教程 2-2 URL详细匹配规则

    Django 自学笔记兼学习教程第2章第2节--URL详细匹配规则 点击查看教程总目录 本章第一节中我们简单介绍了URL与View关系 简单概括来说,网页请求的url会通过urls.py里面的urlp ...

  3. windows桌面图标不显示,左右键无法使用的解决方法

    问题描述: 日常使用软件中,一返回桌面,桌面图标全部不显示,点击鼠标的左键,右键毫无反应 解决方法: 1. Ctrl+Shift+Esc呼出软仵管理器 2. 右键windows资管理器,点击属性 配图 ...

  4. [hdu7033]Typing Contest

    为了避免浮点运算,不妨将$f_{i}$​​​乘上$C=10^{2}$​​​,问题即求$\max_{S\subseteq [1,n]}\frac{\sum_{i\in S}(C^{2}-(\sum_{j ...

  5. [noi707]LP

    (以下用$Sa=\sum_{j=1}^{i}xi\cdot ai$,Sb和Sc同理)令f[i][x]表示前i个数,$Sa\le x\le Sb$时最小的Sc考虑第i个数是否选择,可以得到递推式$f[i ...

  6. [loj3313]序列

    定义$C_{i}$表示令$i,i+1,i+2,...$的位置减1的操作,定义$I_{i}$表示令$i,i+2,i+4,...$的位置减1的操作 结论1:一定存在一种最优解使得$\forall i$不同 ...

  7. YAPI接口自动鉴权功能部署详解

    安装准备 以下操作,默认要求自己部署过yapi,最好是部署过yapi二次开发环境. 无论是选择在线安装或者是本地安装,都需要安装client工具. 1.yapi-cli:npm install yap ...

  8. 2021.9.30 Codeforces 中档题四道

    Codeforces 1528D It's a bird! No, it's a plane! No, it's AaParsa!(*2500) 考虑以每个点为源点跑一遍最短路,每次取出当前距离最小的 ...

  9. Atcoder 2444 - JOIOI 王国(二分)

    题面传送门 记 \(mxi\) 为 IOI 国海拔的最大值,\(mni\) 为 IOI 国海拔的最小值,\(mxj\) 为 JOI 国海拔的最大值,\(mnj\) 为 JOI 国海拔的最小值. 不难发 ...

  10. linux 线程函数小结

    由于主线程已经开始跑了,次线程还在使用串口打印需要一点时间,因此打印的都是重复的. #include "pthread.h" #include "stdio.h" ...