题面传送门

题意:

有一张 \(n\) 个点 \(m\) 条边的有向图,你初始在 \(1\) 号点,边上有边权 \(c_i\) 表示只有当你经过至少 \(c_i\) 条边的时候你才能经过第 \(i\) 条边。

求从 \(1\) 号点开始最少走过多少条边才能到达 \(n\) 号点。

\(n,m \leq 150,c_i\leq 10^9\)

注意到题目中 \(c_i\) 的数据范围可以达到 \(10^9\),我们显然不能一步步枚举可达的位置。

但是 \(m\) 的数据范围很小,说明转移矩阵最多改变 \(150\) 次,这启示我们可以用矩阵乘法

具体来说,我们建立 \(1\times n\) 的矩阵 \(A\),\(A_i\) 表示在当前状态下 \(i\) 是否能够到达(\(0/1\))。

再建立一个 \(n\times n\) 的转移矩阵 \(B\),\(B_{i,j}\) 表示 \(i\) 与 \(j\) 是否有边相连。

那么走一步之后,新的 \(A'_i=\or_{i=1}^nA_k\and B_{k,i}\)

也就是说,如果存在一个点 \(k\) 使得在当前状态下能够到达 \(k\) 并且 \(k\) 与 \(i\) 有直接边相连,那么就可以从 \(k\) 走到 \(i\)。

由于广义矩阵乘法也满足乘法结合律,那么走 \(t\) 步后可达状态为 \(A\times B^t\)

考虑将边按照 \(c_i\) 从小到大排序,然后依次改变转移矩阵 \(B\)

然后做一遍多源 \(bfs\),求出可达的所有点中,到达点 \(n\) 的最短距离。

时间复杂度 \(\mathcal O(n^3m\log c_i)\)。注意到矩阵 \(A,B\) 每一位都是 \(0\) 或 \(1\),矩阵乘法中也只包含位运算,因此可以使用 bitset 优化,时间复杂度 \(\mathcal O(\frac{n^3m\log c_i}{\omega})\) 。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=150+5;
const int MAXM=150+5;
int n,m,d[MAXN];
struct edge{
int u,v,c;
friend bool operator <(edge a,edge b){
return a.c<b.c;
}
} e[MAXM];
struct mat{
bitset<MAXN> x[MAXN];
friend mat operator *(mat a,mat b){
mat c;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
if(a.x[i][j]) c.x[i]|=b.x[j];//optimize multiplation by bitset
return c;
}
} to,c;
mat qpow(mat x,int e){
mat ret;for(int i=1;i<=n;i++) ret.x[i][i]=1;
while(e){if(e&1) ret=ret*x;x=x*x;e>>=1;}return ret;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].c);
sort(e+1,e+m+1);to.x[1][1]=1;int pre=0,ans=2e9;
for(int i=1;i<=m;i++){
to=to*qpow(c,e[i].c-pre);
pre=e[i].c;c.x[e[i].u][e[i].v]=1;
memset(d,63,sizeof(d));
queue<int> q;for(int j=1;j<=n;j++) if(to.x[1][j]) q.push(j),d[j]=0;
while(!q.empty()){
int cur=q.front();q.pop();
for(int j=1;j<=n;j++) if(c.x[cur][j]&&d[j]>1e9){
d[j]=d[cur]+1;q.push(j);
}
}
if(d[n]<1e9) ans=min(ans,e[i].c+d[n]);
}
if(ans==2e9) puts("Impossible");
else printf("%d\n",ans);
return 0;
}

Codeforces 576D - Flights for Regular Customers(bitset 优化广义矩阵乘法)的更多相关文章

  1. Codeforces 576D Flights for Regular Customers(矩阵加速DP)

    题目链接  Flights for Regular Customers 首先按照$d$的大小升序排序 然后分成$m$个时刻,每条路径一次处理过来. $can[i][j]$表示当前时刻$i$能否走到$j ...

  2. Codeforces 576D Flights for Regular Customers (图论、矩阵乘法、Bitset)

    题目链接 http://codeforces.com/contest/576/problem/D 题解 把边按\(t_i\)从小到大排序后枚举\(i\), 求出按前\((i-1)\)条边走\(t_i\ ...

  3. Codeforces 576D. Flights for Regular Customers(倍增floyd+bitset)

    这破题调了我一天...错了一大堆细节T T 首先显然可以将边权先排序,然后逐个加进图中. 加进图后,倍增跑跑看能不能到达n,不能的话加新的边继续跑. 倍增的时候要预处理出h[i]表示转移矩阵的2^0~ ...

  4. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  5. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  6. 576D Flights for Regular Customers

    分析 https://www.cnblogs.com/onioncyc/p/8037056.html 写的好像有点问题 但是大致就是这个意思 代码很好理解 代码 #include<bits/st ...

  7. CF576D Flights for Regular Customers 矩阵乘法 + Bitset优化

    %%%cxhscst2's blog Codeforces 576D Flights for Regular Customers(矩阵加速DP) 代码非常优美 + 简洁,学习到了 Code: #inc ...

  8. 【CodeForces】576 D. Flights for Regular Customers

    [题目]D. Flights for Regular Customers [题意]给定n个点m条边的有向图,每条边有di表示在经过该边前必须先经过di条边,边可重复经过,求1到n的最小经过边数.n,m ...

  9. 「CF576D」 Flights for Regular Customers

    「CF576D」 Flights for Regular Customers 对不起我又想网络流去了 你看这长得多像啊,走过至少多少条边就是流量下界,然后没上界 但是这个题求的最少走多少条边啊...完 ...

随机推荐

  1. linux系统(centos)下su和sudo命令的区别

    linux系统(centos)下su和sudo命令的区别 区别 我们在日常使用过程中,这2个命令很多时候能达到相同的效果,对细节区别十分模糊,这里进行简单的解释和区分.希望大家能够正确使用这2个命令, ...

  2. kivy 选择框

    from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import builder # 注册 ...

  3. UltraSoft - Beta - Scrum Meeting 2

    Date: May 18th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 建立Beta仓库管理增加服务器部署和Git协作文档 Liuzh 前端 查阅响应式布 ...

  4. Spring父子上下文的使用案例

    Spring父子上下文的使用案例 一.背景 二.需求 三.实现步骤 1.基础代码编写 2.测试结果 四.小彩蛋 五.完整代码 一.背景 最近在看在使用Spring Cloud的时候发现,当我们通过Fe ...

  5. 修炼Servlet

    修炼Servlet 一.Servlet简单认识 1.Servlet是什么 Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HTTP 客户端的 ...

  6. 从零开始 DIY 智能家居 - 基于 ESP32 的智能语音合成播报模块

    目录 前言 硬件选择 代码解析 获取代码 设备控制命令: 设备和协议初始化流程: 配置设备信息 回调函数注册 语音播报与设置流程 总结 前言 这里这么多设备,突然发现我做的好像都是传感器之类的居多好像 ...

  7. 构建乘积数组 牛客网 剑指Offer

    构建成绩数组 牛客网 剑指Offer 题目描述 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...*A[i-1]A[i ...

  8. AGC036 A-Triangle | 构造

    题目链接 题意: 给出一个数$S(1\leqslant S \leqslant 10^{18})$. 要求在平面直角坐标系中找到三个点$(X_1,Y_1),(X_2,Y_2),(X_3,Y_3)$,满 ...

  9. poj 3041 Asteroids(最小点覆盖)

    题意: N*N的矩阵,有K个敌人,坐标分别是(C1,C1),.....,(Rk,Ck). 有一个武器,每发射一次,可消掉某行或某列上的所有的敌人. 问消灭所有敌人最少需要多少发. 思路: 二分建图:左 ...

  10. linux系列之: 你知道查看文件空间的两种方法吗?

    目录 简介 du命令 df命令 总结 简介 linux系统中查看文件空间大小应该是一个非常常见的命令了,今天给大家介绍linux系统中查看文件空间的两种方法和在使用中可能会遇到的奇怪问题. 为什么会有 ...