其中其决定作用的是这篇文章  https://www.pugetsystems.com/labs/hpc/Install-TensorFlow-with-GPU-Support-the-Easy-Way-on-Ubuntu-18-04-without-installing-CUDA-1170/

注意兼容版本:https://devtalk.nvidia.com/default/topic/1047898/cuda-setup-and-installation/cuda-10-1-tensorflow-1-13/2

1-安装显卡驱动

在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。

sudo apt purge nvidia*
ubuntu-drivers devices # 可以看到显卡等设备,和推荐的驱动
sudo ubuntu-drivers autoinstall # 安装推荐驱动,通常是最新版

如果通过ubuntu-drivers devices看不到NVidia显卡,则添加

sudo add-apt-repository ppa:graphics-drivers
sudo apt-get update

安装完后,重启系统, 启动后,在图形界面运行Nvidia X Server Settings,可以看到显卡情况,如下图。

2-安装Anaconda+Tensorflow-GPU

安装 Anaconda

bash Anaconda3-5.3.0-Linux-x86_64.sh # make sure append the Anaconda executable directory to your PATH environment variable in .bashrc
source ~/.bashrc
python --version # to show the python version

装之前,推荐切换到国内源:

anaconda的源改为国内镜像, 配置文件是~/.condarc

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes

pip源改为国内镜像, 配置文件是~/.pip/pip.conf, 该后的文件内容如下:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
trusted-host=https://pypi.tuna.tsinghua.edu.cn

update conda

conda update conda -y
conda update anaconda -y
conda update python -y
conda update --all -y

安装tensorflow

conda create --name tf-gpu   # Create a Python "virtual environment" for TensorFlow using conda
conda activate tf-gpu       # 注意运行此命令后,命令行开头的提示变为(tf-gpu) user@computer:~$,表示tf-gpu环境处于激活状态
# 后面的命令,都在tf-gpu环境下执行,我保留了命令行的提示,以示区别

(tf-gpu) user@computer:~$ conda install tensorflow-gpu -y # install TensorFlow with GPU acceleration and all of the dependencies.

为Tensorflow环境创建Jupyter Notebook Kernel

(tf-gpu) user@computer:~$ conda install ipykernel -y
(tf-gpu) user@computer:~$ conda install jupyter
(tf-gpu) user@computer:~$ python -m ipykernel install --user --name tf-gpu --display-name "TensorFlow-GPU"

安装keras

(tf-gpu) user@computer:~$ conda install keras -y

3-测试安装结果

用Keras 例程(Keras内部会用到Tensorflow)

打开Jupyter Notebook

jupyter notebook

创建新笔记: New下拉菜单 -> 选择TensorFlow-GPU

输入如下测试代码,并运行:

# Import dependencies
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Flatten, MaxPooling2D, Conv2D
from keras.callbacks import TensorBoard # Load and process the MNIST data
# 推荐先下载mnist.npz到目录~/.keras/datasets/
(X_train,y_train), (X_test, y_test) = mnist.load_data(path="mnist.npz")
X_train = X_train.reshape(60000,28,28,1).astype('float32')
X_test = X_test.reshape(10000,28,28,1).astype('float32')
X_train /= 255
X_test /= 255
n_classes = 10
y_train = keras.utils.to_categorical(y_train, n_classes)
y_test = keras.utils.to_categorical(y_test, n_classes) # Create the LeNet-5 neural network architecture
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)) )
model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax')) # Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Set log data to feed to TensorBoard for visual analysis
tensor_board = TensorBoard('./logs/LeNet-MNIST-1') # Train the model
model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=1,
validation_data=(X_test,y_test), callbacks=[tensor_board])

运行完后查看误差曲线

 (tf-gpu) dbk@i9:~$ tensorboard --logdir=./logs --port 6006

效果如下图

Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA)的更多相关文章

  1. Ubuntu18.04 NVIDIA显卡驱动 安装大全

    离线安装NVIDIA显卡驱动 费了一天的劲,走了好多的坑,最主要的原因是gcc版本的问题,一定要用最新版本的gcc!!! 1)官网下载显卡驱动 2)apt 下载gcc包及其依赖包,可用apt-cach ...

  2. Ubuntu16.04 Nvidia显卡驱动简明安装指南

    简单得整理了一下Ubuntu16.04 Nvidia显卡驱动的安装步骤: 查看当前系统显卡参数: sudo lspci | grep -i nvidia 删除之前的驱动: sudo apt-get - ...

  3. Hadoop2.2集群安装配置-Spark集群安装部署

    配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(19 ...

  4. 从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))…..

    从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))-.. 博客分类: 工具使用 SVNsubversion配置管理Apache应用服务器  </div> 花了一 ...

  5. MySQL 5.7.33 超级详细下载安装配置测试教程(可以安装成功版)

    目录 1.引言及注意事项 (1) 引言: (2) 注意: 2.MySQL下载 3.配置环境变量 4.配置my.ini文件(重点) 5.安装MySQL(重点) 6.设置密码 7.测试MySQL是否安装成 ...

  6. (解决某些疑难杂症)Ubuntu16.04 + NVIDIA显卡驱动 + cuda10 + cudnn 安装教程

    一.NVIDIA显卡驱动 打开终端,输入: sudo nautilus 在新打开的文件夹中,进入以下路径(不要用命令行): 左下角点计算机,lib,modules 这时会有几个文件夹,对每个文件夹都进 ...

  7. Ubuntu 14.04 Nvidia显卡驱动手动安装及设置

      更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用 ...

  8. Ubuntu 14.04 Nvidia显卡驱动安装及设置

    更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用集显 ...

  9. nginx安装配置+清缓存模块安装

    经过一段时间的使用,发现nginx在并发与负载能力方面确实优于apache,现在已经将大部分站点从apache转到了nginx了.以下是nginx的一些简单的安装配置. 环境 操作系统:CentOS. ...

随机推荐

  1. etcd学习(4)-centos7中部署etcd

    etcd的搭建 前言 单机 集群 创建etcd配置文件 更新etcd系统默认配置 启动 配置ETCD为启动服务 测试下 参考 etcd的搭建 前言 这里记录下如何搭建etcd 单机 在etcd的rel ...

  2. python开发,注意事项

    提高python代码运行效率 1.使用生成器,节约内存.[一边循环一边计算的机制,称为生成器:generator] 例: .如何创建生成器 1.只要把一个列表生成式的[]改成(),就创建了一个gene ...

  3. odoo学习笔记create函数

    @api.multi def create_order_sale(self): """""" stage_list = [] for ord ...

  4. <textarea></textarea>标签的placeholder属性不生效问题

    <textarea></textarea>标签的placeholder属性不生效问题   1.在用到<textarea></textarea>标签时,设 ...

  5. 如何用js得到当前页面的url信息方法

    设置或获取对象指定的文件名或路径. alert(window.location.pathname) 设置或获取整个 URL 为字符串. alert(window.location.href); 设置或 ...

  6. 字符串匹配算法(三)-KMP算法

    今天我们来聊一下字符串匹配算法里最著名的算法-KMP算法,KMP算法的全称是 Knuth Morris Pratt 算法,是根据三位作者(D.E.Knuth,J.H.Morris 和 V.R.Prat ...

  7. 庆FastGithub加入.NET Core Community

    .NET Core Community .NET Core Community是一个基于并围绕着 .NET 技术栈展开组织和活动的非官方.非盈利性的民间开源社区,提供了很多优秀的 .NET 开源项目. ...

  8. Vulhub-DC-1靶场

    前言: DC-1靶场是Vulhub系一款渗透测试的实战靶场,拥有五个Flag.本篇博客讲述了如何拿去这五个Flag,并详细描述其中的注意点. 实验环境: 虚拟机环境:virtualbox 虚拟机1:D ...

  9. fiddler各种颜色锁说明

  10. A*算法寻路(C++代码实现)

    A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法.算法中的距离估算值与实际值越接近,最终搜索速度越快.--来自百度百科. 我在网上看了不少关于A ...