其中其决定作用的是这篇文章  https://www.pugetsystems.com/labs/hpc/Install-TensorFlow-with-GPU-Support-the-Easy-Way-on-Ubuntu-18-04-without-installing-CUDA-1170/

注意兼容版本:https://devtalk.nvidia.com/default/topic/1047898/cuda-setup-and-installation/cuda-10-1-tensorflow-1-13/2

1-安装显卡驱动

在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。

sudo apt purge nvidia*
ubuntu-drivers devices # 可以看到显卡等设备,和推荐的驱动
sudo ubuntu-drivers autoinstall # 安装推荐驱动,通常是最新版

如果通过ubuntu-drivers devices看不到NVidia显卡,则添加

sudo add-apt-repository ppa:graphics-drivers
sudo apt-get update

安装完后,重启系统, 启动后,在图形界面运行Nvidia X Server Settings,可以看到显卡情况,如下图。

2-安装Anaconda+Tensorflow-GPU

安装 Anaconda

bash Anaconda3-5.3.0-Linux-x86_64.sh # make sure append the Anaconda executable directory to your PATH environment variable in .bashrc
source ~/.bashrc
python --version # to show the python version

装之前,推荐切换到国内源:

anaconda的源改为国内镜像, 配置文件是~/.condarc

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes

pip源改为国内镜像, 配置文件是~/.pip/pip.conf, 该后的文件内容如下:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
trusted-host=https://pypi.tuna.tsinghua.edu.cn

update conda

conda update conda -y
conda update anaconda -y
conda update python -y
conda update --all -y

安装tensorflow

conda create --name tf-gpu   # Create a Python "virtual environment" for TensorFlow using conda
conda activate tf-gpu       # 注意运行此命令后,命令行开头的提示变为(tf-gpu) user@computer:~$,表示tf-gpu环境处于激活状态
# 后面的命令,都在tf-gpu环境下执行,我保留了命令行的提示,以示区别

(tf-gpu) user@computer:~$ conda install tensorflow-gpu -y # install TensorFlow with GPU acceleration and all of the dependencies.

为Tensorflow环境创建Jupyter Notebook Kernel

(tf-gpu) user@computer:~$ conda install ipykernel -y
(tf-gpu) user@computer:~$ conda install jupyter
(tf-gpu) user@computer:~$ python -m ipykernel install --user --name tf-gpu --display-name "TensorFlow-GPU"

安装keras

(tf-gpu) user@computer:~$ conda install keras -y

3-测试安装结果

用Keras 例程(Keras内部会用到Tensorflow)

打开Jupyter Notebook

jupyter notebook

创建新笔记: New下拉菜单 -> 选择TensorFlow-GPU

输入如下测试代码,并运行:

# Import dependencies
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Flatten, MaxPooling2D, Conv2D
from keras.callbacks import TensorBoard # Load and process the MNIST data
# 推荐先下载mnist.npz到目录~/.keras/datasets/
(X_train,y_train), (X_test, y_test) = mnist.load_data(path="mnist.npz")
X_train = X_train.reshape(60000,28,28,1).astype('float32')
X_test = X_test.reshape(10000,28,28,1).astype('float32')
X_train /= 255
X_test /= 255
n_classes = 10
y_train = keras.utils.to_categorical(y_train, n_classes)
y_test = keras.utils.to_categorical(y_test, n_classes) # Create the LeNet-5 neural network architecture
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)) )
model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax')) # Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Set log data to feed to TensorBoard for visual analysis
tensor_board = TensorBoard('./logs/LeNet-MNIST-1') # Train the model
model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=1,
validation_data=(X_test,y_test), callbacks=[tensor_board])

运行完后查看误差曲线

 (tf-gpu) dbk@i9:~$ tensorboard --logdir=./logs --port 6006

效果如下图

Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA)的更多相关文章

  1. Ubuntu18.04 NVIDIA显卡驱动 安装大全

    离线安装NVIDIA显卡驱动 费了一天的劲,走了好多的坑,最主要的原因是gcc版本的问题,一定要用最新版本的gcc!!! 1)官网下载显卡驱动 2)apt 下载gcc包及其依赖包,可用apt-cach ...

  2. Ubuntu16.04 Nvidia显卡驱动简明安装指南

    简单得整理了一下Ubuntu16.04 Nvidia显卡驱动的安装步骤: 查看当前系统显卡参数: sudo lspci | grep -i nvidia 删除之前的驱动: sudo apt-get - ...

  3. Hadoop2.2集群安装配置-Spark集群安装部署

    配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(19 ...

  4. 从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))…..

    从subversion开始(svn安装配置全过程(+全套安装文件与配置文件))-.. 博客分类: 工具使用 SVNsubversion配置管理Apache应用服务器  </div> 花了一 ...

  5. MySQL 5.7.33 超级详细下载安装配置测试教程(可以安装成功版)

    目录 1.引言及注意事项 (1) 引言: (2) 注意: 2.MySQL下载 3.配置环境变量 4.配置my.ini文件(重点) 5.安装MySQL(重点) 6.设置密码 7.测试MySQL是否安装成 ...

  6. (解决某些疑难杂症)Ubuntu16.04 + NVIDIA显卡驱动 + cuda10 + cudnn 安装教程

    一.NVIDIA显卡驱动 打开终端,输入: sudo nautilus 在新打开的文件夹中,进入以下路径(不要用命令行): 左下角点计算机,lib,modules 这时会有几个文件夹,对每个文件夹都进 ...

  7. Ubuntu 14.04 Nvidia显卡驱动手动安装及设置

      更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用 ...

  8. Ubuntu 14.04 Nvidia显卡驱动安装及设置

    更换主板修复grub 引导后,无法从Nvidia进入系统(光标闪烁), 可能是显卡驱动出了问题. 1. 进入BIOS设置, 从集成显卡进入系统 将显示器连接到集显的VGI口, 并在BIOS中设置用集显 ...

  9. nginx安装配置+清缓存模块安装

    经过一段时间的使用,发现nginx在并发与负载能力方面确实优于apache,现在已经将大部分站点从apache转到了nginx了.以下是nginx的一些简单的安装配置. 环境 操作系统:CentOS. ...

随机推荐

  1. 重新手写一个Vue

    该版把上一次的数据修改就更新全部页面改为了局部更新,相比于上一版的在数据绑定上不是简单的一个监听set再全部更新,具体见下文. 总体流程 仍然是根据自己理解来实现的绑定,相较于上一版的数据更新就全部刷 ...

  2. odoo中Controller

    一:Controller 一般通过继承的形式来创建controller类,继承自odoo.http.Controller. 以route装饰器来装饰定义的方法,提供url路由访问路径: class M ...

  3. Apache ActiveMQ(cve-2015-5254)

    影响版本 Apache ActiveMQ 5.13.0之前5.x版本中存在安全漏洞 复现 使用工具执行命令 工具地址 https://github.com/matthiaskaiser/jmet/re ...

  4. 手写Pascal解释器(一)

    目录 一.编写解释器的动机 二.part1 三.part2 四.part3 一.编写解释器的动机 学习了Vue之后,我发现对字符串的处理对于编写一个程序框架来说是非常重要的,就拿Vue来说,我们使用该 ...

  5. 计算机网络part2——物理层

    物理层概述 1.物理层基本概念 物理层解决如何在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体. 主要任务:确定与传输媒体接口有关的一些特性 特性: 机械特性 电气特性 功能特性 规 ...

  6. badboy如何录制jmetet脚本

    网盘下载: https://pan.baidu.com/s/1mTOEeE47tmk29_wndID3iw 傻瓜式安装即可, 内附教程 1. 打开Badboy, 新建一个文件 2.  输入要录制的网址 ...

  7. SpringCloud升级之路2020.0.x版-11.Log4j2 监控相关

    本系列代码地址:https://github.com/HashZhang/spring-cloud-scaffold/tree/master/spring-cloud-iiford Log4j2 异步 ...

  8. Openresty Lua协程调度机制

    写在前面 OpenResty(后面简称:OR)是一个基于Nginx和Lua的高性能Web平台,它内部集成大量的Lua API以及第三方模块,可以利用它快速搭建支持高并发.极具动态性和扩展性的Web应用 ...

  9. Java HashSet和TreeSet【笔记】

    Java HashSet和TreeSet[笔记] PS:HashSet.TreeSet 两个类是在 Map 的基础上组装起来的类 HashSet 类注释 1.底层实现基于 HashMap,所以迭代时不 ...

  10. 001 PCI Express体系结构(一)

    一 .PCI总线的基本知识 PCI总线作为处理器系统的局部总线,主要目的是为了连接外部设备,而不是作为处理器的系统总线连接Cache和主存储器.但是PCI总线.系统总线和处理器体系结构之间依然存在着紧 ...