Cornfields
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6798   Accepted: 3315

Description

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.


FJ has, at great expense, surveyed his square farm of N x N hectares
(1 <= N <= 250). Each hectare has an integer elevation (0 <=
elevation <= 250) associated with it.



FJ will present your program with the elevations and a set of K (1
<= K <= 100,000) queries of the form "in this B x B submatrix,
what is the maximum and minimum elevation?". The integer B (1 <= B
<= N) is the size of one edge of the square cornfield and is a
constant for every inquiry. Help FJ find the best place to put his
cornfield.

Input

* Line 1: Three space-separated integers: N, B, and K.



* Lines 2..N+1: Each line contains N space-separated integers. Line
2 represents row 1; line 3 represents row 2, etc. The first integer on
each line represents column 1; the second integer represents column 2;
etc.



* Lines N+2..N+K+1: Each line contains two space-separated integers
representing a query. The first integer is the top row of the query; the
second integer is the left column of the query. The integers are in the
range 1..N-B+1.

Output

* Lines 1..K: A single integer per line representing the difference between the max and the min in each query.

Sample Input

5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2

Sample Output

5
思路:单调栈;
因为正方形的大小是固定的,然后我们先每列每个元素用单调队列维护最大最小值,然后在用维护的矩阵,在每行每个元素维护最大最小值
这样ama[i][j]就是以(i-b+1,j-b+1)为左上角,所有元素的最大值;同理ami[i][j]为最小。复杂度O(n*n);
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<deque>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 int ma[300][300];
12 int maxx[300][300];
13 int minn[300][300];
14 int que[300*2];
15 int ama[300][300];
16 int ami[300][300];
17 void get_maxx(int n,int k);
18 void get_minn(int n,int k);
19 int main(void)
20 {
21 int n,b,k;
22 int i,j;
23 while(scanf("%d %d %d",&n,&b,&k)!=EOF)
24 {
25 for(i = 1; i <= n; i++)
26 {
27 for(j = 1; j <= n; j++)
28 {
29 scanf("%d",&ma[i][j]);
30 }
31 }
32 get_minn(n,b);
33 get_maxx(n,b);
34 while(k--)
35 {
36 int x;
37 int y;
38 scanf("%d %d",&x,&y);
39 x+=b-1;
40 y+=b-1;
41 printf("%d\n",ama[x][y]-ami[x][y]);
42 }
43 }
44 return 0;
45 }
46 void get_maxx(int n,int k)
47 {
48 int i,j;
49 for(j = 1; j <= n; j++)
50 {
51 int head = 1;
52 int rail = 0;
53 for(i = 1; i <= n; i++)
54 {
55 if(head > rail)
56 {
57 que[++rail] = i;
58 }
59 else
60 {
61 int id = que[rail];
62 while(ma[id][j] <= ma[i][j])
63 {
64 rail--;
65 if(rail < head)
66 break;
67 id = que[rail];
68 }
69 que[++rail] = i;
70 }
71 int ic = que[head];
72 while(ic < max(0,i-k)+1)
73 {
74 head++;
75 ic = que[head];
76 }
77 maxx[i][j] = ma[que[head]][j];
78 }
79 }
80 for(i = 1; i <= n; i++)
81 {
82 int head = 1;
83 int rail = 0;
84 for(j = 1; j <= n; j++)
85 {
86 if(head > rail)
87 {
88 que[++rail] = j;
89 }
90 else
91 {
92 int id = que[rail];
93 while(maxx[i][id] <= maxx[i][j])
94 {
95 rail--;
96 if(rail < head)
97 break;
98 id = que[rail];
99 }
100 que[++rail] = j;
101 }
102 int ic = que[head];
103 while(ic < max(0,j-k)+1)
104 {
105 head++;
106 ic = que[head];
107 }
108 ama[i][j] = maxx[i][que[head]];
109 }
110 }
111 }
112 void get_minn(int n,int k)
113 {
114 int i,j;
115 for(j = 1; j <= n; j++)
116 {
117 int head = 1;
118 int rail = 0;
119 for(i = 1; i <= n; i++)
120 {
121 if(head > rail)
122 {
123 que[++rail] = i;
124 }
125 else
126 {
127 int id = que[rail];
128 while(ma[id][j] >= ma[i][j])
129 {
130 rail--;
131 if(rail < head)
132 break;
133 id = que[rail];
134 }
135 que[++rail] = i;
136 }
137 int ic = que[head];
138 while(ic < max(0,i-k)+1)
139 {
140 head++;
141 ic = que[head];
142 }
143 minn[i][j] = ma[que[head]][j];
144 }
145 }
146 for(i = 1; i <= n; i++)
147 {
148 int head = 1;
149 int rail = 0;
150 for(j = 1; j <= n; j++)
151 {
152 if(head > rail)
153 {
154 que[++rail] = j;
155 }
156 else
157 {
158 int id = que[rail];
159 while(minn[i][id] >= minn[i][j])
160 {
161 rail--;
162 if(rail < head)
163 break;
164 id = que[rail];
165 }
166 que[++rail] = j;
167 }
168 int ic = que[head];
169 while(ic < max(0,j-k)+1)
170 {
171 head++;
172 ic = que[head];
173 }
174 ami[i][j] = minn[i][que[head]];
175 }
176 }
177 }

Cornfields(poj2019)的更多相关文章

  1. Cornfields poj2019 二维RMQ

    Cornfields Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit S ...

  2. [poj2019]Cornfields(二维RMQ)

    题意:给你一个n*n的矩阵,让你从中圈定一个小矩阵,其大小为b*b,有q个询问,每次询问告诉你小矩阵的左上角,求小矩阵内的最大值和最小值的差. 解题关键:二维st表模板题. 预处理复杂度:$O({n^ ...

  3. [POJ 2019] Cornfields

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5516   Accepted: 2714 Descri ...

  4. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  5. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  6. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  7. POJ 2019 Cornfields(二维RMQ)

    相比以前的RMQ不同的是,这是一个二维的ST算法 #include<iostream> #include<cstring> #include<cstdio> #in ...

  8. poj2019 二维RMQ模板题

    和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...

  9. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

随机推荐

  1. C4.5决策树-为什么可以选用信息增益来选特征

    要理解信息增益,首先要明白熵是什么,开始很不理解熵,其实本质来看熵是一个度量值,这个值的大小能够很好的解释一些问题. 从二分类问题来看,可以看到,信息熵越是小的,说明分类越是偏斜(明确),可以理解为信 ...

  2. 《Redis设计与实现》知识点目录

    Redis设计与实现 第一部分 数据结构与对象 第二章 简单动态字符串 p8 简单动态字符串SDS 2.1 SDS的定义 p9 每个sds.h/sdshdr结构表示一个SDS值 2.2 SDS与C字符 ...

  3. Shell 管道指令pipe

    目录 管道命令pipe 选取命令 cut.grep cut 取出需要的信息 grep 取出需要行.过滤不需要的行 排序命令 sort.wc.uniq sort 排序 假设三位数,按十位数从小到大,个位 ...

  4. Vue相关,vue父子组件生命周期执行顺序。

    一.实例代码 父组件: <template> <div id="parent"> <child></child> </div& ...

  5. 打破砂锅问到底!HTTP和HTTPS详解

    HTTP 引自维基百科HTTP:超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式.协作式和超媒体信息系统的应用层协议.HTTP是万维网的数 ...

  6. Output of C++ Program | Set 3

    Predict the output of below C++ programs. Question 1 1 #include<iostream> 2 using namespace st ...

  7. Linux学习 - 网络命令

    一.write 1 功能 给指定在线用户发信息,以Ctrl + D保存结束 2 语法 write  <用户名>  [信息] 二.wall(write all) 1 功能 给所有在线用户发送 ...

  8. Mysql中replace与replace into的用法讲解

    Mysql replace与replace into都是经常会用到的功能:replace其实是做了一次update操作,而不是先delete再insert:而replace into其实与insert ...

  9. 【简】题解 P4297 [NOI2006]网络收费

    传送门:P4297 [NOI2006]网络收费 题目大意: 给定一棵满二叉树,每个叶节点有一个状态(0,1),任选两个叶节点,如果这两个叶节点状态相同但他们的LCA所管辖的子树中的与他们状态相同的叶节 ...

  10. 程序员Meme 第00期