MindSpore数据集mindspore::dataset
MindSpore数据集mindspore::dataset
ResizeBilinear
#include <image_process.h>
bool ResizeBilinear(LiteMat &src, LiteMat &dst, int dst_w, int dst_h)
通过双线性算法调整图像大小,当前仅支持的数据类型为uint8,当前支持的通道为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出的图片数据。
- dst_w: 输出图片数据的宽度。
- dst_h: 输出图片数据的高度。
- 返回值
执行成功返回true,否则不满足条件返回false。
InitFromPixel
#include <image_process.h>
bool InitFromPixel(const unsigned char *data, LPixelType pixel_type, LDataType data_type, int w, int h, LiteMat &m)
从像素初始化LiteMat,提供数据为RGB或者BGR格式,不用进行格式转换,当前支持的转换是RGB_TO_BGR、RGBA_To_RGB、RGBA_To_BGR、NV21_To_BGR和NV12_To_BGR。
- 参数
- data: 输入的数据。
- pixel_type: 像素点的类型。
- data_type: 数据的类型。
- w: 输出数据的宽度。
- h: 输出数据的高度。
- mat: 用于存储图像数据。
- 返回值
初始化成功返回true,否则返回false。
ConvertTo
#include <image_process.h>
bool ConvertTo(LiteMat &src, LiteMat &dst, double scale = 1.0)
转换数据类型,当前支持的转换是将uint8转换为float。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- scale: 对像素做尺度(默认值为1.0)。
- 返回值
转换数据类型成功返回true,否则返回false。
Crop
#include <image_process.h>
bool Crop(LiteMat &src, LiteMat &dst, int x, int y, int w, int h)
裁剪图像,通道支持为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- x: 屏幕截图起点的x坐标值。
- y: 屏幕截图起点的y坐标值。
- w: 截图的宽度。
- h: 截图的高度。
- 返回值
裁剪图像成功返回true,否则返回false。
SubStractMeanNormalize
#include <image_process.h>
bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, const std::vector<float> &mean, const std::vector<float> &std)
归一化图像,当前支持的数据类型为float。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- mean: 数据集的均值。
- std: 数据集的方差。
- 返回值
归一化成功返回true,否则返回false。
Pad
#include <image_process.h>
bool Pad(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type, uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r)
填充图像,通道支持为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- top: 图片顶部长度。
- bottom: 图片底部长度。
- left: 图片左边长度。
- right: 图片右边长度。
- pad_type: padding的类型。
- fill_b_or_gray: R或者GRAY。
- fill_g: G。
- fill_r: R。
- 返回值
填充图像成功返回true,否则返回false。
ExtractChannel
#include <image_process.h>
bool ExtractChannel(const LiteMat &src, LiteMat &dst, int col)
按索引提取图像通道。
- 参数
- src: 输入的图片数据。
- col: 通道的序号。
- 返回值
提取图像通道成功返回true,否则返回false。
Split
#include <image_process.h>
bool Split(const LiteMat &src, std::vector<LiteMat> &mv)
将图像通道拆分为单通道。
- 参数
- src: 输入的图片数据。
- mv: 单个通道数据。
- 返回值
图像通道拆分成功返回true,否则返回false。
Merge
#include <image_process.h>
bool Merge(const std::vector<LiteMat> &mv, LiteMat &dst)
用几个单通道阵列创建一个多通道图像。
- 参数
- mv: 单个通道数据。
- dst: 输出图像数据。
- 返回值
创建多通道图像成功返回true,否则返回false。
Affine
#include <image_process.h>
void Affine(LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, UINT8_C1 borderValue)
对1通道图像应用仿射变换。
- 参数
- src: 输入图片数据。
- out_img: 输出图片数据。
- M[6]: 仿射变换矩阵。
- dsize: 输出图像的大小。
- borderValue: 采图之后用于填充的像素值。
void Affine(LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, UINT8_C3 borderValue)
#include <image_process.h>
对3通道图像应用仿射变换。
- 参数
- src: 输入图片数据。
- out_img: 输出图片数据。
- M[6]: 仿射变换矩阵。
- dsize: 输出图像的大小。
- borderValue: 采图之后用于填充的像素值。
GetDefaultBoxes
#include <image_process.h>
std::vector<std::vector<float>> GetDefaultBoxes(BoxesConfig config)
获取Faster R-CNN,SSD,YOLO等的默认框。
- 参数
- config: BoxesConfig结构体对象。
- 返回值
返回默认框。
ConvertBoxes
#include <image_process.h>
void ConvertBoxes(std::vector<std::vector<float>> &boxes, std::vector<std::vector<float>> &default_boxes, BoxesConfig config)
将预测框转换为(y,x,h,w)的实际框。
- 参数
- boxes: 实际框的大小。
- default_boxes: 默认框。
- config: BoxesConfig结构体对象。
ApplyNms
#include <image_process.h>
std::vector<int> ApplyNms(std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres, int max_boxes)
对实际框的非极大值抑制。
- 参数
- all_boxes: 所有输入的框。
- all_scores: 通过网络执行后所有框的得分。
- thres: IOU的预值。
- max_boxes: 输出框的最大值。
- 返回值
返回框的id。
LiteMat
#include <lite_mat.h>
LiteMat是一个处理图像的类。
构造函数和析构函数
LiteMat
LiteMat()
LiteMat(int width, LDataType data_type = LDataType::UINT8)
LiteMat(int width, int height, LDataType data_type = LDataType::UINT8)
LiteMat(int width, int height, int channel, LDataType data_type = LDataType::UINT8)
MindSpore中dataset模块下LiteMat的构造方法,使用参数的默认值。
~LiteMat
~LiteMat()
MindSpore dataset LiteMat的析构函数。
公有成员函数
Init
void Init(int width, LDataType data_type = LDataType::UINT8)
void Init(int width, int height, LDataType data_type = LDataType::UINT8)
void Init(int width, int height, int channel, LDataType data_type = LDataType::UINT8)
该函数用于初始化图像的通道,宽度和高度,参数不同。
IsEmpty
bool IsEmpty() const
确定对象是否为空的函数。
- 返回值
返回true或者false。
Release
void Release()
释放内存的函数。
公有属性
data_ptr_
data_ptr_
pointer类型,表示存放图像数据的地址。
elem_size_
elem_size_
int类型,表示元素的字节数。
width_
width_
int类型,表示图像的宽度。
height_
height_
int类型,表示图像的高度。
channel_
channel_
int类型,表示图像的通道数。
c_step_
c_step_
int类型,表示经过对齐后的图像宽高之积。
dims_
dims_
int类型,表示图像的维数。
size_
size_
size_t类型,表示图像占用内存的大小。
data_type_
data_type_
LDataType类型,表示图像的数据类型。
ref_count_
ref_count_
pointer类型,表示引用计数器的地址。
Subtract
#include <lite_mat.h>
bool Subtract(const LiteMat &src_a, const LiteMat &src_b, LiteMat *dst)
计算每个元素的两个图像之间的差异。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。
Divide
#include <lite_mat.h>
bool Divide(const LiteMat &src_a, const LiteMat &src_b, LiteMat *dst)
计算每个元素在两个图像之间的划分。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。
Multiply
#include <lite_mat.h>
bool Multiply(const LiteMat &src_a, const LiteMat &src_b, LiteMat *dst)
计算每个元素在两个图像之间的相乘值。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。
MindSpore数据集mindspore::dataset的更多相关文章
- 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- 镶嵌数据集 Mosaic Dataset 的常见数据组织方式
镶嵌数据集是ESRI公司推出一种用于管理海量影像数据的数据模型,定义在GeoDatabase数据模型中. 它的常见数据组织方式有两种: 1. 源镶嵌数据集 Source Mosaic Dataset ...
- MindSpore张量mindspore::tensor
MindSpore张量mindspore::tensor MSTensor #include <ms_tensor.h> MSTensor定义了MindSpore Lite中的张量. 构造 ...
- MindSpore接口mindspore::api
MindSpore接口mindspore::api Context #include <context.h> Context类用于保存执行中的环境变量. 静态公有成员函数 Instance ...
- HTML5 数据集属性dataset
有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...
- 数据库学习任务四:数据读取器对象SqlDataReader、数据适配器对象SqlDataAdapter、数据集对象DataSet
数据库应用程序的开发流程一般主要分为以下几个步骤: 创建数据库 使用Connection对象连接数据库 使用Command对象对数据源执行SQL命令并返回数据 使用DataReader和DataSet ...
- pytorch 读数据接口 制作数据集 data.dataset
[吐槽] 啊,代码,你这个大猪蹄子 自己写了cifar10的数据接口,跟官方接口load的数据一样, 沾沾自喜,以为自己会写数据接口了 几天之后,突然想,自己的代码为啥有点慢呢,这数据集不大啊 用了官 ...
- Pytorch数据集读入——Dataset类,实现数据集打乱Shuffle
在进行相关平台的练习过程中,由于要自己导入数据集,而导入方法在市面上五花八门,各种库都可以应用,在这个过程中我准备尝试torchvision的库dataset torchvision.datasets ...
- TensorFlow2.0(10):加载自定义图片数据集到Dataset
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- hdu4278 小想法
题意: 有几个计数器,从1开始计数,计数器有问题,没有3,8这两个数字,只要出现3或者8,那么直接跳过,如 12579 下一个数字就是 12590 ,给你一个数字,问他实际计数了多少. 思 ...
- Android平台的so注入--LibInject
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53890315 大牛古河在看雪论坛分享的Android平台的注入代码,相信很多搞An ...
- LA3403天平难题(4个DFS)
题意: 给出房间的宽度r和每个吊坠的重量wi,设计一个尽量宽但宽度不能超过房间宽度的天平,挂着所有挂坠,每个天平的一段要么挂这一个吊坠,要么挂着另一个天平,每个天平的总长度是1,细节我给出题 ...
- Intel汇编语言程序设计学习-第六章 条件处理-下
6.6 应用:有限状态机 这个东西说了半天,感觉就是把逻辑弄得跟有向图一样,没看出来什么高端的东西,下面就整理下书上说的概念: 有限状态机(FSM,Finite-State Machine)是依据输 ...
- 记一次 .NET 医院CIS系统 内存溢出分析
一:背景 1. 讲故事 前几天有位朋友加wx求助说他的程序最近总是出现内存溢出,很崩溃,如下图: 和这位朋友聊下来,发现他也是搞医疗的,哈哈,.NET 在医疗方面还是很有市场的,不过对于内存方面出的问 ...
- 前端小白的学习之路html与css的较量【二】
标签的划分 块级元素 独占一行 设置 宽 高可以起作用 排列方式: 上下排列 行内元素 可以共占一行 设置 宽 高 不起作用,大小由内容决定 排列方式:左右排列 行内块 可以共占一行 可以设置宽 高 ...
- Day008 下标越界及小结
数组的四个基本特点 其长度是确定的.数组一旦被创建,它的大小就是不可以改变的. 其元素必须是相同类型,不允许出现混合类型. 数组中的元素可以是任何数据类型,包括基本类型和引用类型. 数组变量属于引用类 ...
- 一道VM的逆向所引发的符号执行思路
逆向虚拟机保护 虚拟机保护类的题目需要找到虚拟机的vm_code(字节码),各个handler,然后进一步分析虚拟机保护代码的流程. 用IDA打开程序,经分析后0x403040全局变量地址处存储的就是 ...
- Redis内存——内存消耗(内存都去哪了?)
最新:Redis内存--三个重要的缓冲区 最新:Redis内存--内存消耗(内存都去哪了?) 最新:Redis持久化--如何选择合适的持久化方式 最新:Redis持久化--AOF日志 更多文章... ...
- CRM系统实现自动化的“三部曲”
在了解CRM系统的自动化的时候,我们先来看一下CRM能干什么. 从上面的流程图我们就可以看出,CRM可以管理售前,售中和售后的整个客户生命周期. 为什么在复杂的客户生命周期中需要自动化呢? 当然是为了 ...