java语言方法中定义final类型的入参有什么用意?
无论参数是基本数据类型,还是引用数据类型,只要加了final,不好意思,该参数不可以再赋值(实参传进来给形参,就相当于初始化完成)。可以防止在方法里面不小心重新赋值,造成一些不必要的麻烦!!!
参考:https://blog.csdn.net/Thinkingcao/article/details/83070259
java语言方法中定义final类型的入参有什么用意?的更多相关文章
- Java在方法中定义可变参数类型
学习目标: 掌握可变参数的应用 学习内容: 1.定义 在方法中传递数组有一种更简单的方式--方法的可变参数,其本质是一个语法糖,目的是让开发者写代码更简单. 2.语法 [修饰符] 返回值类型 方法名称 ...
- 为什么匿名内部类只能访问其所在方法中的final类型的局部变量?
大部分时候,类被定义成一个独立的程序单元.在某些情况下,也会把一个类放在另一个类的内部定义,这个定义在其他类内部的类就被称为内部类,包含内部类的类也被称为外部类. class Outer { priv ...
- 1.java.io包中定义了多个流类型来实现输入和输出功能,
1.java.io包中定义了多个流类型来实现输入和输出功能,可以从不同的角度对其进行分 类,按功能分为:(C),如果为读取的内容进行处理后再输出,需要使用下列哪种流?(G) A.输入流和输出流 B ...
- 143、Java内部类之访问方法中定义的参数或变量
01.代码如下: package TIANPAN; class Outer { // 外部类 private String msg = "Hello World !"; publi ...
- Java&&As3.0 中的final 关键字
Java和AS3.0关键字final有“这是无法改变的”或者“终态的”含义,它可以修饰非抽象类.非抽象类成员方法和变量.你可能出于两种理解而需要阻止改变:设计或效率. 可以修饰的对象: fin ...
- 在主方法中定义一个大小为50的一维整型数组,数组i名为x,数组中存放着{1,3,5,…,99}输出这个数组中的所有元素,每输出十个换一行
package hanqi; import java.util.Scanner; public class Test7 { public static void main(String[] args) ...
- C# 方法中的参数类型
二.方法中的参数类型 1. 值参数 值参数是指不带修饰符只带数据类型的形参. 值参数在使用值向方法传递参数时,编译程序会把实参的值做一份拷贝,并且将此拷贝传递给该方法,被调用的方法不会修改内存中实参的 ...
- 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。
//在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...
- 利用过滤器对string类型的入参进行统一trim
背景 最近做的一些项目都是后台管理系统,主要是对表单数据的增删改查操作,其中有些表单项是字符串类型的,对于这些类型的表单项就需要在保存或编辑之前要进行.trim()处理,刚开始感觉没什么,遇到了就手动 ...
随机推荐
- sublime text 3 在Windows下配置sublimelinter-php的路径问题
首先用package control安装sublimelinter和sublimelinter-php,然后依次点击菜单preference-package settings-sublimelinte ...
- 定要过python二级 真题 第四套
第一模块 基本操作 1.print(" { } " . format(s)) 记住 " { }" ...
- Python3入门系列之-----file方法操作
file方法 file处理文件的一些方法,创建一个file对像后即可对文件进行读写相关操作,首先你得打开文件,此处用到open函数 open函数 语法:file_objcet = open(file_ ...
- Spark MLib完整基础入门教程
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...
- 纯净Ubuntu16安装CUDA(9.1)和cuDNN
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- 从零入门 Serverless | 在线应用的 Serverless 实践
作者 | 唐慧芬(黛忻) 阿里云产品专家 导读:毫无疑问,Serverless 能够在效率和成本上给用户带来巨大收益.那具体到落地又应该怎么做呢?本文就给大家详细解读 Serverless 的落地实践 ...
- 无服务计算应用场景探讨及 FaaS 应用实战
作者 | 宋文龙(闻可) 阿里云全球技术服务部高级交付专家 什么是无服务计算 无服务器计算(Serverless Computing)在构建和运行应用时无需管理服务器等基础设施.它描述了一个细粒度的 ...
- .NET Reflector软件破解
转自:https://blog.csdn.net/zxy13826134783/article/details/89057871 软件和注册机下载地址: 链接:https://pan.baidu.co ...
- 重修 Tarjan
Tarjan是谁 Tarjan's SCCs(有向图强连通分量)algorithm 给定⼀个有向图 \(G\),若存在 \(rt\in V\),满⾜从 \(rt\) 出发能到达 \(V\) 中的所有的 ...
- 洛谷luogu3957跳房子(单调队列优化)
QwQ被普及组的题折磨的死去活来. 硬是卡线段树,没卡过QwQ oi生涯,第一道正经的单调队列dp题 进入正题 题目大意: 其中\(n \le 500000\) 看到这个题的第一感觉就是二分金币数 很 ...