基于ray的分布式机器学习(一)
基本思路:
1、对数据分块,使用多个worker分别处理一个数据块,每个worker暴露两个接口,分别是损失计算的接口loss和梯度计算的接口grad;
2、同时定义full_loss和full_grad接口对每个worker的loss和grad进行聚合;
3、使用bfgs算法进行参数优化,分别使用full_loss和full_grad作为bfgs的损失函数和梯度函数,即可进行网络参数优化;
注意:在此实现中,每个worker内部每次均计算一个数据块上的损失和梯度,而非一个batch。
#0、导入依赖
import numpy as np
import os
import scipy.optimize import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data import ray
import ray.experimental.tf_utils #1、定义模型
class LinearModel(object):
def __init__(self, shape):
"""Creates a LinearModel object."""
x = tf.placeholder(tf.float32, [None, shape[0]])
w = tf.Variable(tf.zeros(shape))
b = tf.Variable(tf.zeros(shape[1]))
self.x = x
self.w = w
self.b = b
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, shape[1]])
self.y_ = y_
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
self.cross_entropy = cross_entropy
self.cross_entropy_grads = tf.gradients(cross_entropy, [w, b])
self.sess = tf.Session() self.variables = ray.experimental.tf_utils.TensorFlowVariables(
cross_entropy, self.sess) def loss(self, xs, ys):
"""计算loss"""
return float(
self.sess.run(
self.cross_entropy, feed_dict={
self.x: xs,
self.y_: ys
})) def grad(self, xs, ys):
"""计算梯度"""
return self.sess.run(
self.cross_entropy_grads, feed_dict={
self.x: xs,
self.y_: ys
}) #2、定义远程worker,用于计算模型loss、grads
@ray.remote
class NetActor(object):
def __init__(self, xs, ys):
os.environ["CUDA_VISIBLE_DEVICES"] = ""
with tf.device("/cpu:0"):
self.net = LinearModel([784, 10])
self.xs = xs
self.ys = ys # 计算一个数据块的loss
def loss(self, theta):
net = self.net
net.variables.set_flat(theta)
return net.loss(self.xs, self.ys) # 计算一个数据块的梯度
def grad(self, theta):
net = self.net
net.variables.set_flat(theta)
gradients = net.grad(self.xs, self.ys)
return np.concatenate([g.flatten() for g in gradients]) def get_flat_size(self):
return self.net.variables.get_flat_size() #3、获取远程worker损失的函数
def full_loss(theta):
theta_id = ray.put(theta)
loss_ids = [actor.loss.remote(theta_id) for actor in actors]
return sum(ray.get(loss_ids)) #4、获取远程worker梯度的函数
def full_grad(theta):
theta_id = ray.put(theta)
grad_ids = [actor.grad.remote(theta_id) for actor in actors]
# 使用fmin_l_bfgs_b须转换为float64数据类型
return sum(ray.get(grad_ids)).astype("float64") #5、使用lbfgs进行训练
if __name__ == "__main__":
ray.init() mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 数据分块,每个worker跑一个数据块
num_batches = 10
batch_size = mnist.train.num_examples // num_batches
batches = [mnist.train.next_batch(batch_size) for _ in range(num_batches)] actors = [NetActor.remote(xs, ys) for (xs, ys) in batches] # 参数初始化
dim = ray.get(actors[0].get_flat_size.remote())
theta_init = 1e-2 * np.random.normal(size=dim) # 优化
result = scipy.optimize.fmin_l_bfgs_b(
full_loss, theta_init, maxiter=10, fprime=full_grad, disp=True)
基于ray的分布式机器学习(一)的更多相关文章
- 基于ray的分布式机器学习(二)
基本思路:基于parameter server + multiple workers模式.同步方式:parameter server负责网络参数的统一管理,每次迭代均将参数发送给每一个worker,多 ...
- Angel 实现FFM 一、对于Angel 和分布式机器学习的简单了解
Angel是腾讯开源的一个分布式机器学习框架.是一个PS模式的分布式机器学习框架. https://github.com/Angel-ML/angel 这是github地址. 我了解的分布式机器学 ...
- 分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学 ...
- Adam:大规模分布式机器学习框架
引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈录,假设每周读三篇论文, ...
- 分布式机器学习框架:MxNet 前言
原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...
- [转帖]Greenplum :基于 PostgreSQL 的分布式数据库内核揭秘 (上篇)
Greenplum :基于 PostgreSQL 的分布式数据库内核揭秘 (上篇) https://www.infoq.cn/article/3IJ7L8HVR2MXhqaqI2RA 学长的文章.. ...
- 分布式机器学习:逻辑回归的并行化实现(PySpark)
1. 梯度计算式导出 我们在博客<统计学习:逻辑回归与交叉熵损失(Pytorch实现)>中提到,设\(w\)为权值(最后一维为偏置),样本总数为\(N\),\(\{(x_i, y_i)\} ...
- 分布式机器学习:同步并行SGD算法的实现与复杂度分析(PySpark)
1 分布式机器学习概述 大规模机器学习训练常面临计算量大.训练数据大(单机存不下).模型规模大的问题,对此分布式机器学习是一个很好的解决方案. 1)对于计算量大的问题,分布式多机并行运算可以基本解决. ...
- 分布式机器学习:模型平均MA与弹性平均EASGD(PySpark)
计算机科学一大定律:许多看似过时的东西可能过一段时间又会以新的形式再次回归. 1 模型平均方法(MA) 1.1 算法描述与实现 我们在博客<分布式机器学习:同步并行SGD算法的实现与复杂度分析( ...
随机推荐
- 死磕生菜 -- lettuce 间歇性发生 RedisCommandTimeoutException 的深层原理及解决方案
0x00 起源 项目的一些微服务集成了 Spring Data Redis,而底层的 Redis 客户端是 lettuce,这也是默认的客户端.微服务在某些环境中运行很正常,但在另一些环境中运行就会间 ...
- python基础学习之元组和字典的功能方法
什么是元组?(tuple) emmmmmm,这个没必要深究吧,就是一排'元素',一行 格式: a = (1,2,3,4,5,6,7,8,9)用小括号表示的,极为元组. 其有序,且不可更改,可以对比st ...
- android分析之mutex
Android的锁是对Linux锁的一种包装: // ------------------------------------------------------------------------- ...
- Vue3手册译稿 - 深入组件 - 自定义事件
本章节需要掌握组件基础 emit我译成发射,觉得发射这个词比较形象的形容将子组件事件发射出来的一个动作. 事件名 像组件和props,事件名也会进行自动转换,如果你在子组件里发射一个驼峰命名的事件,你 ...
- 【Azure 服务总线】详解Azure Service Bus SDK中接收消息时设置的maxConcurrentCalls,prefetchCount参数
(Azure Service Bus服务总线的两大类消息处理方式: 队列Queue和主题Topic) 问题描述 使用Service Bus作为企业消息代理,当有大量的数据堆积再Queue或Topic中 ...
- Vite2+Electron仿抖音|vite2.x+electron12+vant3短视频|直播|聊天
整合vite2+electron12跨平台仿抖音电脑版实战Vite2-ElectronDouYin. 基于vite2.0+electron12+vant3+swiper6+v3popup等技术跨端仿制 ...
- windows一些知识
宽字节 1.什么是ASCII码? 一张存储了字母大小写与一些符号的表,用一个字节表示,最高位不使用,最多只能存储128个符号或字母,但世界上有很多种语言,这远远不够 2.什么是扩展ASCII码? 把最 ...
- k8s:py项目发布完整流程
k8s:py项目发布流程 1. 编写Dockerfile # cat Dockerfile FROM python:3.6-slim USER root RUN apt-get update & ...
- Java高并发测试框架JCStress
前言 如果要研究高并发,一般会借助高并发工具来进行测试.JCStress(Java Concurrency Stress)它是OpenJDK中的一个高并发测试工具,它可以帮助我们研究在高并发场景下JV ...
- 004-Java中的运算符
@ 目录 一.运算符 一.分类 二.算数运算符 三.关系运算符 四.逻辑运算符 五.赋值运算符 六.条件运算符(三目运算符) 七.+运算符 一.运算符 一.分类 二.算数运算符 加 $+$ 减 $ ...