题解

一道概率与期望的状压题目

这种最优性的题目,我们一般都是倒着转移,因为它的选择是随机的所以我们无法判断从左还是从右更有,所以我们都搜一遍

时间一定会爆,采用记忆化搜索,一种状态的答案一定是固定的,所以可以记忆化

但是空间也会爆,当状态大于 \(2^{25}\) 次方时,我们选择使用一个 \(map\) ,小于时就用一个数组

对于数组,我们先打上标记,然后直接记忆化

注意,总的状态一定要在最高位再高一位设成 \(1\),因为 \(00000\) 和 \(000\) 不是一种状态,但是若不加,就会判成一种状态

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=getchar();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
map<int,db> dph;
db dps[1<<25];
int n,k,st,wnm;
char s[33];
int calc(int st,int cur) {
ri tmp=st>>cur,bc=st&((1<<cur-1)-1);
return tmp<<(cur-1)|bc;
}
db dfs(int st,int siz) {
if (siz==n-k) return 0.0;
if (siz>24&&dph.find(st)!=dph.end()) return dph[st];
if (siz<=24&&dps[st]!=-1.0) return dps[st];
register db res=0.0;
ri lm=siz>>1;
for (ri i(1);i<=lm;p(i)) {
ri tmp1=st>>i-1&1,tmp2=st>>siz-i&1;
ri st1=calc(st,i),st2=calc(st,siz-i+1);
res+=2.0*cmax(dfs(st1,siz-1)+(db)tmp1,dfs(st2,siz-1)+(db)tmp2)/siz;
}
if (siz&1) {
lm+=1;
ri tmp1=st>>lm-1&1,st1=calc(st,lm);
res+=(dfs(st1,siz-1)+(db)tmp1)/siz;
}
return siz>24?dph[st]=res:dps[st]=res;
}
inline int main() {
FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
for (ri i(0);i<1<<25;p(i)) dps[i]=-1.0;
read(n),read(k);
scanf("%s",s+1);
for (ri i(1);i<=n;p(i)) st|=(s[i]=='W')<<n-i,wnm+=(s[i]=='W');
st|=1<<n;
printf("%.10lf\n",dfs(st,n));
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $19\; \rm v$的更多相关文章

  1. NOIP 模拟 $19\; \rm w$

    题解 \(by\;zj\varphi\) 树形 \(dp\) 题目 有一个结论:对于一个图,有多少奇度数的点,处以二就是答案,奇度数指的是和它相连的边中被反转的是奇数 证明很好证 那么设 \(dp_{ ...

  2. NOIP 模拟 $19\; \rm u$

    题解 \(by\;zj\varphi\) 二维差分的题目 维护两个标记,一个向下传,一个向右下传: 对于每次更新,我们可以直接更新 \((r,c)+s,(r+l,c)-s\) ; \((r,c+1)- ...

  3. 7.19 NOIP模拟6

    这次考试又一次让mikufun认识到了常数的重要性 T1.那一天我们许下约定 这题一看到D<=1e12,想都没想,矩阵快速幂!然后飞快的码了一个,复杂度n^3logD,让后我观察了一下这个转移矩 ...

  4. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  5. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  6. NOIP 模拟 $36\; \rm Cicada 拿衣服$

    题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...

  7. NOIP 模拟 $22\; \rm e$

    题解 对于这个 \(abs\) 就是求大于 \(r\) 的最小值,小于 \(r\) 的最大值,建权值线段树或平衡树. 因为是 \(k\) 个点的联通块,就是求它们的 \(lca\) 到它们的链,可持久 ...

  8. NOIP 模拟 $16\; \rm Lost My Music$

    题解 \(by\;zj\varphi\) 一道凸包的题 设 \(\rm dep_u\) 表示节点 \(u\) 的深度,那么原式就可化为 \(-\frac{c_v-c_u}{dep_v-dep_u}\) ...

  9. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...

随机推荐

  1. Docker部署Mysq集群

    1.PXC(Percona XtraDB Cluster) 速度慢 但能保证强一致性 适用于保存价值较高的数据 数据同步是双向的 在任一节点写入数据 都会同步到其他所有节点 在任何节点上都能同时读写 ...

  2. asp.net 网页图片URL

    "upload/"+Eval("kemu")+"/"+Eval("tx")+".jpg" " ...

  3. 重拾javaweb(假期后第一次web测试)

    上学期通过十六周的时间,完成了javaweb的项目实践,其中包括很多次的练习以及测试.寒假时间大多用来挥霍,并没有对这些知识进行复习以及进一步的学习,所以在这场考试中,最终以八分的可怜成绩收尾,实在过 ...

  4. Java基础00-基础语法3

    1. 注释 1.1 注释概述 1.2 注释分类 1.3 示例 2. 关键字 2.1 关键字概述 2.2 关键字的特点 3. 常量 3.1 常量的概述 3.2 常量分类 以上常量除了空常量都是可以直接输 ...

  5. Greenplum安装总结

    Greenplum安装总结 一.环境说明 服务器centos7 4台,一台Master节点,三台Segment节点: mdw 192.168.43.21 (master节点) sdw1 192.168 ...

  6. 2021最新Java基础知总结,助力大厂offer

    本文是我花了三周时间整理出来的,希望对Java初学者有帮助~ Java概述 Java的特点 Java是一门面向对象的编程语言.面向对象和面向过程是一种软件开发思想. 面向过程就是分析出解决问题所需要的 ...

  7. 《手把手教你》系列技巧篇(十三)-java+ selenium自动化测试-元素定位大法之By partial link text(详细教程)

    1.简介 本文按计划就要开始介绍partial link text,顾名思义是通过链接定位的(官方说法:超链接文本定位).什么是partial link text呢,看到part这个单词我们就可以知道 ...

  8. js学习笔记之日期倒计时DOM操作

    1.访问html元素 getElementById() 方法  返回对拥有指定 id 的第一个对象的引用,只有dom对象有效 getElementsByName() 方法  返回指定名称的对象集合 g ...

  9. 2020国防科大综述:3D点云深度学习—综述(点云形状识别部分)

    目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D形状分类 3.1基于多视图的方法 3.2基于体素的方法 3.3基于点的方法 3.3.1 点对多层感知机方法 3.3.2基于卷积 ...

  10. 关于在iar+j-link上的坑坑洼洼

    引言 iar版本为8.32,j-link驱动版本为4.34,对应的是stm32 ARM cortex-m3 ,文末有本文的软件和工具,以及需要的文件的链接(免费) 第一坑:iar注册机不能注册iar9 ...