NOIP 模拟 $19\; \rm v$
题解
一道概率与期望的状压题目
这种最优性的题目,我们一般都是倒着转移,因为它的选择是随机的所以我们无法判断从左还是从右更有,所以我们都搜一遍
时间一定会爆,采用记忆化搜索,一种状态的答案一定是固定的,所以可以记忆化
但是空间也会爆,当状态大于 \(2^{25}\) 次方时,我们选择使用一个 \(map\) ,小于时就用一个数组
对于数组,我们先打上标记,然后直接记忆化
注意,总的状态一定要在最高位再高一位设成 \(1\),因为 \(00000\) 和 \(000\) 不是一种状态,但是若不加,就会判成一种状态
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=getchar();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
map<int,db> dph;
db dps[1<<25];
int n,k,st,wnm;
char s[33];
int calc(int st,int cur) {
ri tmp=st>>cur,bc=st&((1<<cur-1)-1);
return tmp<<(cur-1)|bc;
}
db dfs(int st,int siz) {
if (siz==n-k) return 0.0;
if (siz>24&&dph.find(st)!=dph.end()) return dph[st];
if (siz<=24&&dps[st]!=-1.0) return dps[st];
register db res=0.0;
ri lm=siz>>1;
for (ri i(1);i<=lm;p(i)) {
ri tmp1=st>>i-1&1,tmp2=st>>siz-i&1;
ri st1=calc(st,i),st2=calc(st,siz-i+1);
res+=2.0*cmax(dfs(st1,siz-1)+(db)tmp1,dfs(st2,siz-1)+(db)tmp2)/siz;
}
if (siz&1) {
lm+=1;
ri tmp1=st>>lm-1&1,st1=calc(st,lm);
res+=(dfs(st1,siz-1)+(db)tmp1)/siz;
}
return siz>24?dph[st]=res:dps[st]=res;
}
inline int main() {
FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
for (ri i(0);i<1<<25;p(i)) dps[i]=-1.0;
read(n),read(k);
scanf("%s",s+1);
for (ri i(1);i<=n;p(i)) st|=(s[i]=='W')<<n-i,wnm+=(s[i]=='W');
st|=1<<n;
printf("%.10lf\n",dfs(st,n));
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $19\; \rm v$的更多相关文章
- NOIP 模拟 $19\; \rm w$
题解 \(by\;zj\varphi\) 树形 \(dp\) 题目 有一个结论:对于一个图,有多少奇度数的点,处以二就是答案,奇度数指的是和它相连的边中被反转的是奇数 证明很好证 那么设 \(dp_{ ...
- NOIP 模拟 $19\; \rm u$
题解 \(by\;zj\varphi\) 二维差分的题目 维护两个标记,一个向下传,一个向右下传: 对于每次更新,我们可以直接更新 \((r,c)+s,(r+l,c)-s\) ; \((r,c+1)- ...
- 7.19 NOIP模拟6
这次考试又一次让mikufun认识到了常数的重要性 T1.那一天我们许下约定 这题一看到D<=1e12,想都没想,矩阵快速幂!然后飞快的码了一个,复杂度n^3logD,让后我观察了一下这个转移矩 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP 模拟 $36\; \rm Cicada 拿衣服$
题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...
- NOIP 模拟 $22\; \rm e$
题解 对于这个 \(abs\) 就是求大于 \(r\) 的最小值,小于 \(r\) 的最大值,建权值线段树或平衡树. 因为是 \(k\) 个点的联通块,就是求它们的 \(lca\) 到它们的链,可持久 ...
- NOIP 模拟 $16\; \rm Lost My Music$
题解 \(by\;zj\varphi\) 一道凸包的题 设 \(\rm dep_u\) 表示节点 \(u\) 的深度,那么原式就可化为 \(-\frac{c_v-c_u}{dep_v-dep_u}\) ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
随机推荐
- flask 的安装与使用
一.Flask Flask 是一个轻量级的框架,可以将数据库中的数据呈现到页面上(动态网站). 之前搭建的网站是静态网站(没有连接数据库)页面的数据不会改变.但是现在用的网站都是动态网站. 1.下载F ...
- Java 在Word中创建邮件合并模板并合并文本和图片
Word里面的邮件合并功能是一种可以快速批量操作同类型数据的方式,常见的如数据填充.打印等.其中必不可少的步骤包括用于填充的模板文档.填充的数据源以及实现邮件合并的功能.下面,通过Java程序展示如何 ...
- Android布局方式总结
Android的布局分别是:线性布局LinearLayout.相对布局RelativeLayout.帧布局FrameLayout.网格布局GridLayout.约束布局ConstraintLayout ...
- Redis+Lua解决高并发场景抢购秒杀问题
之前写了一篇PHP+Redis链表解决高并发下商品超卖问题,今天介绍一些如何使用PHP+Redis+Lua解决高并发下商品超卖问题. 为何要使用Lua脚本解决商品超卖的问题呢? Redis在2.6版本 ...
- C语言:常量写法
float a=7.5f; //7.5为浮点数 long b=100L; //100为长整数 int c=0123;// 0123为8进制数 int d=0x123;//0x123为16进制数
- CSS从入门到喜欢,从喜欢到着魔
如果把网页比作一个人的话,html就是他的骨架,而css是他的皮肤,javascript是神经控制着行动.html,css,javascript都是构建网页的核心技术. CSS简介 css指的是层叠样 ...
- Java基础00-字符串14
1. API 1.1 API概述 2. String String常用类的常用方法 String字符串变量的创建: 声明: String 变量名; String str; 声明并初始化: Str ...
- Java基础00-Java概述1
1. Java语言发展史 1.1 Java语言 语言:人与人交流沟通的表达方式 计算机语言:人与计算机之间进行信息交流沟通的一种特殊语言 Java语言是美国Sun公司(Stanford Univers ...
- 【转载】SpringMVC学习笔记
转载于:SpringMVC笔记 SpringMVC 1.SpringMVC概述 MVC: Model(模型): 数据模型,提供要展示的数据,:Value Object(数据Dao) 和 服务层(行为S ...
- Linux安装Tomcat-Nginx-FastDFS-Redis-Solr-集群——【第九集-补充-热部署项目到tomcat中,但是数据库配置文件错误,中途停止部署,导致执行shutdow.sh报错异常: Could not contact localhost:8005. Tomcat may not be running error while shutting down】
1,经过千辛万苦的尝试和百度,终于一个博客:http://stackmirror.caup.cn/page/skxugjqj0ldc关于catalina.sh文件的执行引起了我的注意: 2,我执行ca ...