\(\mathcal{Description}\)

  Link.

  给定序列 \(\{a_n\}\) 和 \(q\) 次操作,操作内容如下:

  1. 给出 \(l,r,k,b\),声明一个修改方案,表示 \(\forall i\in[l,r],~a_i\leftarrow (ka_i+b)\bmod m\)。
  2. 给出 \(l,r,x\),求将第 \(l\) 到第 \(r\) 个修改方案作用于序列时,\(a_x\) 的值。

  强制在线,\(n\le10^5\),\(q\le6\times10^5\)。

\(\mathcal{Solution}\)

  一种类似在线建线段树的 trick。

  若允许离线,自然可以建立关于修改方案的线段树,每个结点维护对应区间内的修改依次作用后,每个 \(a\) 值会变成的 \(ka+b\)。不同的 \((k,b)\) 形成的区间个数是与结点对应区间长度同阶的,所以一共有 \(\mathcal O(n\log n)\) 个区间。查询时,在每个区间内二分找到会影响 \(x\) 位置的 \((k,b)\),更新答案,单次复杂度是 \(\mathcal O(\log^2n)\) 的。

  转为在线,注意到当线段树结点对应区间内的修改操作全部声明时,这个结点的信息才有效,所以当且仅当区间内修改操作全部声明时,在结点处归并左右儿子信息,均摊复杂度就是离线建树的复杂度。最终复杂度为 \(\mathcal O(n\log n+q\log^2n)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cstdio>
#include <vector>
#include <cassert> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} const int MAXN = 1e5, MAXQ = 6e5;
int type, n, M, q, ary[MAXN + 5]; inline int mul( const long long a, const int b ) { return a * b % M; }
inline int add( const long long a, const int b ) { return ( a + b ) % M; } struct Section {
int l, r, k, b;
inline bool operator < ( const Section& s ) const {
return l != s.l ? l < s.l : r < s.r;
}
};
typedef std::vector<Section> Atom; inline Atom mergeSec( const Atom& u, const Atom& v ) {
static Atom ret; ret.clear();
int i = 0, j = 0, las = 1, us = int( u.size() ), vs = int( v.size() );
while ( i < us && j < vs ) {
if ( u[i].r >= v[j].r ) {
ret.push_back( { las, v[j].r, mul( u[i].k, v[j].k ),
add( mul( v[j].k, u[i].b ), v[j].b ) } );
las = v[j].r + 1;
if ( u[i].r == v[j++].r ) ++i;
} else {
ret.push_back( { las, u[i].r, mul( u[i].k, v[j].k ),
add( mul( v[j].k, u[i].b ), v[j].b ) } );
las = u[i++].r + 1;
}
}
assert( las == n + 1 );
return ret;
} struct SegmentTree {
Atom sec[MAXQ << 2];
int upc[MAXQ << 2]; inline void insert( const int u, const int l, const int r,
const int x, const int i, const int j, const int a, const int b ) {
if ( l == r ) {
++upc[u];
if ( i > 1 ) sec[u].push_back( { 1, i - 1, 1, 0 } );
sec[u].push_back( { i, j, a, b } );
if ( j < n ) sec[u].push_back( { j + 1, n, 1, 0 } );
return ;
}
int mid = l + r >> 1;
if ( x <= mid ) insert( u << 1, l, mid, x, i, j, a, b );
else insert( u << 1 | 1, mid + 1, r, x, i, j, a, b );
if ( ( upc[u] = upc[u << 1] + upc[u << 1 | 1] ) == r - l + 1 ) {
sec[u] = mergeSec( sec[u << 1], sec[u << 1 | 1] );
}
} inline void query( const int u, const int l, const int r,
const int ql, const int qr, const int x, int& v ) {
if ( ql <= l && r <= qr ) {
int sid = std::upper_bound( sec[u].begin(), sec[u].end(),
Section{ x + 1, 0, 0, 0 } ) - sec[u].begin() - 1;
assert( 0 <= sid && sid < int( sec[u].size() ) );
assert( sec[u][sid].l <= x && x <= sec[u][sid].r );
v = add( mul( v, sec[u][sid].k ), sec[u][sid].b );
return ;
}
int mid = l + r >> 1;
if ( ql <= mid ) query( u << 1, l, mid, ql, qr, x, v );
if ( mid < qr ) query( u << 1 | 1, mid + 1, r, ql, qr, x, v );
}
} sgt; int main() {
type = rint() & 1, n = rint(), M = rint();
rep ( i, 1, n ) ary[i] = rint();
q = rint();
for ( int qid = 1, ans = 0, cnt = 0, op, i, j, a, b; qid <= q; ++qid ) {
op = rint(), i = rint(), j = rint(), a = rint();
if ( type ) i ^= ans, j ^= ans;
if ( op == 1 ) {
b = rint();
sgt.insert( 1, 1, q, ++cnt, i, j, a, b );
} else {
if ( type ) a ^= ans;
sgt.query( 1, 1, q, i, j, a, ans = ary[a] );
wint( ans ), putchar( '\n' );
}
}
return 0;
}

Solution -「UOJ #46」玄学的更多相关文章

  1. Solution -「UOJ #87」mx 的仙人掌

    \(\mathcal{Description}\)   Link.   给出含 \(n\) 个结点 \(m\) 条边的仙人掌图.\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内 ...

  2. Solution -「UOJ #450」复读机

    \(\mathcal{Description}\)   Link.   求从 \(m\) 种颜色,每种颜色无限多的小球里选 \(n\) 个构成排列,使得每种颜色出现次数为 \(d\) 的倍数的排列方案 ...

  3. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  4. Solution -「UNR #5」「UOJ #671」诡异操作

    \(\mathcal{Desciprtion}\)   Link.   给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...

  5. Solution -「JOISC 2020」「UOJ #509」迷路的猫

    \(\mathcal{Decription}\)   Link.   这是一道通信题.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\).   程序 Anthon ...

  6. Solution -「UR #21」「UOJ #632」挑战最大团

    \(\mathcal{Description}\)   Link.   对于简单无向图 \(G=(V,E)\),定义它是"优美"的,当且仅当 \[\forall\{a,b,c,d\ ...

  7. Solution -「UR #2」「UOJ #32」跳蚤公路

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的带权有向图,每条边还有属性 \(s\in\{-1,0,1\}\).对于每个 \(u ...

  8. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  9. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

随机推荐

  1. sql server - 修改表名、列名

    EXEC sp_rename '旧表名', '新表名'; 例子 EXEC sp_rename 'saveremark', 'drawingLooking'; EXEC sp_rename '表名.[列 ...

  2. spring security +MySQL + BCryptPasswordEncoder 单向加密验证 + 权限拦截 --- 心得

    1.前言 前面学习了 security的登录与登出 , 但是用户信息 是 application 配置 或内存直接注入进去的 ,不具有实用性,实际上的使用还需要权限管理,有些 访问接口需要某些权限才可 ...

  3. selenium实现并发

    for循环和多线程 + selenium 实例一 for循环 # -*- coding: utf-8 -*- """ Datetime: 2019/6/22 Author ...

  4. List转换Map的三种方式

    1.for循环 ... 2.使用guava Map<Long, User> maps = Maps.uniqueIndex(userList, new Function<User, ...

  5. css中两种居中方式text-align:center和margin:0 auto 的使用场景

    关于使用text-align:center和margin:0 auto 两种居中方式的比较 前言:最近由于要学习后端,需要提前学习一部分前端知识,补了补css知识,发现狂神在讲这一部分讲的不是特别清楚 ...

  6. Android官方文档翻译 十八 4.2Pausing and Resuming an Activity

    Pausing and Resuming an Activity 暂停和恢复一个activity This lesson teaches you to 这节课教给你 Pause Your Activi ...

  7. Python常用的数据结构

    一.list 列表 1.列表的特点 有序的,元素可以重复,列表中的元素可以进行增上改查,可以存放不同的数据类型 2.创建列表 中括号创建并填充 --->[] 通过构造函数创建 list() 列表 ...

  8. 记录python2.7迁移到python3.6过程中的一些代码差异

    python2.7 python 3.6 import urllib2 import urllib import urlparse import urllib import exceptions 废弃 ...

  9. 集合框架-LinkedList集合(有序不唯一)

    1 package cn.itcast.p2.linkedlist.demo; 2 3 import java.util.Iterator; 4 import java.util.LinkedList ...

  10. IP:网络上的击鼓传花

    链接,而不是直达 在之前<听说你很懂 DNS?>中我们分析过用户在浏览器里面输入 www.baidu.com 后,浏览器如何通过 DNS 解析拿到 IP 地址,然后请求该 IP 地址获取网 ...