Solution -「JOISC 2021」「LOJ #3489」饮食区
\(\mathcal{Description}\)
Link.
呐……不想概括题意,自己去读叭~
\(\mathcal{Solution}\)
如果仅有 1. 3. 操作,能不能做?
——简单整体二分。
如果仅有 1. 2. 操作,能不能实时维护每个位置还剩下多少人?累计走了多少人?
——吉司机线段树。
所以,离线下来,把上两个重工业揉在一起就能粗暴地过掉这道题√ 复杂度 \(\mathcal O(n\log^2n)\)(\(n,m,q\) 同阶)。
有 \(\mathcal O(n\log n)\) 而且短得多的算法欸,问 Tiw 嘛 qwq。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <vector>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
#define int LL
template<typename Tp = int>
inline Tp rint() {
Tp x = 0; int s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
}
template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
inline LL lmin( const LL a, const LL b ) { return a < b ? a : b; }
const int MAXN = 2.5e5;
const LL LINF = 1ll << 60;
int n, m, q;
std::vector<int> allq;
struct Event {
int a, b, c; LL d;
inline void read() {
if ( int op = rint(); op == 1 ) {
a = rint(), b = rint(), c = rint(), d = rint();
} else if ( op == 2 ) {
a = -1, b = rint(), c = rint(), d = rint();
} else {
a = b = -2, c = rint(), d = rint<LL>();
}
}
} evt[MAXN + 5];
struct SegmentTree {
LL tag[MAXN << 2];
inline void clear( const int u, const int l, const int r ) {
tag[u] = 0;
if ( l == r ) return ;
int mid = l + r >> 1;
clear( u << 1, l, mid ), clear( u << 1 | 1, mid + 1, r );
}
inline void modify( const int u, const int l, const int r,
const int ml, const int mr, const LL v ) {
if ( ml <= l && r <= mr ) return void( tag[u] += v );
int mid = l + r >> 1;
if ( ml <= mid ) modify( u << 1, l, mid, ml, mr, v );
if ( mid < mr ) modify( u << 1 | 1, mid + 1, r, ml, mr, v );
}
inline LL query( const int u, const int l, const int r, const int x ) {
if ( l == r ) return tag[u];
int mid = l + r >> 1;
if ( x <= mid ) return tag[u] + query( u << 1, l, mid, x );
else return tag[u] + query( u << 1 | 1, mid + 1, r, x );
}
} sgt; // It's for both Init and Solve.
namespace Init {
struct JiSegmentTree {
LL tag1[MAXN << 2], tag2[MAXN << 2], mnv[MAXN << 2], smn[MAXN << 2];
inline void clear( const int u, const int l, const int r ) {
smn[u] = LINF;
if ( l == r ) return ;
int mid = l + r >> 1;
clear( u << 1, l, mid ), clear( u << 1 | 1, mid + 1, r );
}
inline void pushad( const int u, const LL v1, const LL v2 ) {
tag1[u] += v1, mnv[u] += v1;
if ( smn[u] != LINF ) smn[u] += v2, tag2[u] += v2;
}
inline void pushdn( const int u ) {
int a = mnv[u << 1], b = mnv[u << 1 | 1];
if ( a <= b ) pushad( u << 1, tag1[u], tag2[u] );
else pushad( u << 1, tag2[u], tag2[u] );
if ( b <= a ) pushad( u << 1 | 1, tag1[u], tag2[u] );
else pushad( u << 1 | 1, tag2[u], tag2[u] );
tag1[u] = tag2[u] = 0;
}
inline void pushup( const int u ) {
mnv[u] = lmin( mnv[u << 1], mnv[u << 1 | 1] );
smn[u] = LINF;
if ( mnv[u] < mnv[u << 1] ) smn[u] = lmin( smn[u], mnv[u << 1] );
if ( mnv[u] < mnv[u << 1 | 1] )
smn[u] = lmin( smn[u], mnv[u << 1 | 1] );
if ( mnv[u] < smn[u << 1] ) smn[u] = lmin( smn[u], smn[u << 1] );
if ( mnv[u] < smn[u << 1 | 1] )
smn[u] = lmin( smn[u], smn[u << 1 | 1] );
}
inline void modify( const int u, const int l, const int r,
const int ml, const int mr, const LL v ) {
if ( ml <= l && r <= mr ) return pushad( u, v, v );
int mid = l + r >> 1; pushdn( u );
if ( ml <= mid ) modify( u << 1, l, mid, ml, mr, v );
if ( mid < mr ) modify( u << 1 | 1, mid + 1, r, ml, mr, v );
pushup( u );
}
inline void upto( const int u, const int l, const int r,
const int ul, const int ur, const LL v ) {
if ( mnv[u] >= v ) return ;
if ( ul <= l && r <= ur && v < smn[u] )
return pushad( u, v - mnv[u], 0 );
int mid = l + r >> 1; pushdn( u );
if ( ul <= mid ) upto( u << 1, l, mid, ul, ur, v );
if ( mid < ur ) upto( u << 1 | 1, mid + 1, r, ul, ur, v );
pushup( u );
}
inline LL query( const int u, const int l, const int r, const int x ) {
if ( l == r ) return mnv[u];
int mid = l + r >> 1; pushdn( u );
if ( x <= mid ) return query( u << 1, l, mid, x );
else return query( u << 1 | 1, mid + 1, r, x );
}
} jsgt;
inline void init() {
jsgt.clear( 1, 1, n );
rep ( i, 1, q ) {
if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
jsgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
} else if ( evt[i].a == -1 ) {
jsgt.modify( 1, 1, n, evt[i].b, evt[i].c, -evt[i].d );
jsgt.upto( 1, 1, n, evt[i].b, evt[i].c, 0 );
} else {
allq.push_back( i );
evt[i].d += sgt.query( 1, 1, n, evt[i].c )
- jsgt.query( 1, 1, n, evt[i].c );
}
}
}
} // namespace Init.
namespace Solve {
int ans[MAXN + 5];
inline void divide( const int l, const int r, const std::vector<int>& qvec ) {
if ( qvec.empty() ) return ;
if ( l == r ) {
for ( int q: qvec ) ans[q] = l;
return ;
}
int mid = l + r >> 1;
rep ( i, l, mid ) if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, evt[i].d );
}
std::vector<int> qlef, qrig;
for ( int q: qvec ) {
if ( sgt.query( 1, 1, n, evt[q].c ) >= evt[q].d ) qlef.push_back( q );
else qrig.push_back( q );
}
divide( mid + 1, r, qrig );
rep ( i, l, mid ) if ( evt[i].a >= 0 ) {
sgt.modify( 1, 1, n, evt[i].a, evt[i].b, -evt[i].d );
}
divide( l, mid, qlef );
}
inline void solve() {
sgt.clear( 1, 1, n );
divide( 1, q + 1, allq );
rep ( i, 1, q ) if ( evt[i].a == -2 ) {
wint( ans[i] > i ? 0 : evt[ans[i]].c ), putchar( '\n' );
}
}
} // namespace Solve.
signed main() {
n = rint(), m = rint(), q = rint();
rep ( i, 1, q ) evt[i].read();
Init::init();
Solve::solve();
return 0;
}
Solution -「JOISC 2021」「LOJ #3489」饮食区的更多相关文章
- Solution -「JOISC 2021」「LOJ #3495」聚会 2
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树.称点集 \(S\) 到结点 \(u\) 的会合距离为 \(\sum_{v\in S}\ope ...
- Solution -「JOISC 2021」「LOJ #3491」道路建设
\(\mathcal{Description}\) Link. 平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值. ...
- Solution -「JOISC 2021」古老的机器
\(\mathcal{Description}\) Link. 这是一道通信题. 对于长度为一个 \(n\),仅包含字符 X, Y, Z 的字符串 \(s\),将其中 \(n\) 个字符按 ...
- Loj #2731 「JOISC 2016 Day 1」棋盘游戏
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...
- 【LOJ】#3036. 「JOISC 2019 Day3」指定城市
LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3032. 「JOISC 2019 Day1」馕
LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 【LOJ】#3031. 「JOISC 2019 Day1」聚会
LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...
随机推荐
- 第10组 Beta冲刺 (2/5)(组长)
1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/14015412.html ·作业博客:https://edu.cnblogs.co ...
- Go语言系列之反射
变量的内在机制 Go语言中的变量是分为两部分的: 类型信息:预先定义好的元信息. 值信息:程序运行过程中可动态变化的. 反射介绍 反射是指在程序运行期对程序本身进行访问和修改的能力.程序在编译时,变量 ...
- json 转换C# class(用于对接api
//说明//使用场景:对接api,返回json结果,直接转换C# class//如何使用:复制下面js代码在浏览器控制台执行 ` "order_item_id": "28 ...
- uniapp如何生成自己的小程序码并且携带参数
生成小程序码需要用到的参数appId appSecret这两个参数可以再微信公众平台里面登录获取 也可以用测试号里面的获取小程序码步骤1.首先要请求官方的API`https://api.weixin ...
- Java 面试题史上最强整理
https://mp.weixin.qq.com/s/kJpRgfI3zT77XqMeRfmmQQ
- STC8H开发(七): I2C驱动MPU6050三轴加速度+三轴角速度检测模块
目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...
- vue和react 相似和区别
相似之处 他们都是JavaScript的UI框架,专注于创造前端的富应用 不同于早期的JavaScript框架"功能齐全",Reat与Vue只有框架的骨架,其他的功能如路由.状态管 ...
- linux虚拟机快照
目录 一:虚拟机快照 一:虚拟机快照 1.什么是快照? 快照可保存虚拟机在特定时刻的状态和数据. 状态包括虚拟机的电源状态(列如,打开电源,关闭电源,挂起). 数据包括组成虚拟机的所有文件,这包括磁盘 ...
- Vulnhub靶机系列之Acid
Acid 下载地址: https://download.vulnhub.com/acid/Acid.rar https://download.vulnhub.com/acid/Acid.rar ...
- docker镜像制作Dockerfile
使用 Dockerfile 定制镜像 从刚才的 docker commit 的学习中,我们可以了解到,镜像的定制实际上就是 定制每一层所添加的配置.文件.如果我们可以把每一层修改.安装.构建.操作 的 ...