\(\mathcal{Preface}\)

  单位根反演,顾名思义就是用单位根变换一类式子的形式。有关单位根的基本概念可见我的这篇博客

\(\mathcal{Formula}\)

  单位根反演的公式很简单:

\[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni}
\]

\(\mathcal{Proof}\)

  分类讨论:

  1. \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\sum_{i=0}^{k-1}1=1\)。
  2. \(k\not=n\). 等比数列求和,右侧为 \(\frac{1}k\cdot\frac{1-\omega_k^{kn}}{1-\omega_k^n}\),其中 \(\omega_k^{kn}=1\),故分子为 \(0\),分母不为 \(0\),式子的值为 \(0\)。

  综上,得证。

\(\mathcal{Inference}\)

  实际问题中,我们往往需要求出对于某个多项式(多为生成函数)\(f\) 的特定倍数次数的系数和。即求:

\[\sum_{i=0}^{\lfloor \frac{n}k\rfloor}[x^{ik}]f(x)
\]

  运用单位根反演的基本公式变形:

\[\begin{aligned}
\sum_{i=0}^{\lfloor\frac{n}k\rfloor}[x^{ik}]f(x)&=\sum_{i=0}^n[k|i][x^i]f(x)\\
&=\sum_{i=0}^n[x^i]f(x)\cdot\frac{1}k\sum_{j=0}^{k-1}\omega_k^{ij}\\
&=\frac{1}k\sum_{j=0}^{k-1}\sum_{i=0}^n[x^i]f(x)(\omega_k^j)^i\\
&=\frac{1}k\sum_{j=0}^{k-1}f(\omega_k^j)
\end{aligned}
\]

  只要能快速求出 \(f\) 在所有 \(k\) 次单位根处的点值,就能 \(\mathcal O(k)\) 得出原式的值啦。

  更方便的形式,若我们想求 \(i\bmod k=r\) 时 \([x^i]f(x)\) 之和,只需要在运用反演时移动一下 \(\omega_k\) 的指标:

\[\begin{aligned}
\sum_{i=0}^n[i\bmod k=r][x^i]f(x)&=\frac{1}k\sum_{i=0}^n\left(\sum_{j=0}^{k-1}\omega_k^{j(i-r)} \right)[x^i]f(x)\\
&=\frac{1}k\sum_{j=0}^{k-1}\omega_{k}^{-jr}f(\omega_k^j)
\end{aligned}
\]

  当然,我们常用原根代替单位根。

\(\mathcal{Examples}\)

  「LOJ 6485」 LJJ 学二项式定理 & my solution.

Note -「单位根反演」学习笔记的更多相关文章

  1. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  2. Note -「动态 DP」学习笔记

    目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...

  3. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  4. 「Manacher算法」学习笔记

    觉得这篇文章写得特别劲,插图非常便于理解. 目的:求字符串中的最长回文子串. 算法思想 考虑维护一个数组$r[i]$代表回文半径.回文半径的定义为:对于一个以$i$为回文中心的奇数回文子串,设其为闭区 ...

  5. 「FHQ Treap」学习笔记

    话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...

  6. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

  7. 「Link-Cut Tree」学习笔记

    Link-Cut Tree,用来解决动态树问题. 宏观上,LCT维护的是森林而非树.因此存在多颗LCT.有点像动态的树剖(链的确定通过$Access$操作),每条链用一颗$splay$维护.$spla ...

  8. 「AC自动机」学习笔记

    AC自动机(Aho-Corasick Automaton),虽然不能够帮你自动AC,但是真的还是非常神奇的一个数据结构.AC自动机用来处理多模式串匹配问题,可以看做是KMP(单模式串匹配问题)的升级版 ...

  9. 【Java】「深入理解Java虚拟机」学习笔记(1) - Java语言发展趋势

    0.前言 从这篇随笔开始记录Java虚拟机的内容,以前只是对Java的应用,聚焦的是业务,了解的只是语言层面,现在想深入学习一下. 对JVM的学习肯定不是看一遍书就能掌握的,在今后的学习和实践中如果有 ...

随机推荐

  1. 万级K8s集群背后 etcd 稳定性及性能优化实践

    1背景与挑战随着腾讯自研上云及公有云用户的迅速增长,一方面,腾讯云容器服务TKE服务数量和核数大幅增长, 另一方面我们提供的容器服务类型(TKE托管及独立集群.EKS弹性集群.edge边缘计算集群.m ...

  2. HDU 2041 超级楼梯 (斐波那契数列 & 简单DP)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2041 题目分析:题目是真的水,不难发现规律涉及斐波那契数列,就直接上代码吧. 代码如下: #inclu ...

  3. 使用医学影像开源库cornerstone.js解析Dicom图像显示到HTML中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 干掉 Postman?测试接口直接生成API文档,ApiPost真香!

    实不相瞒我的收藏夹里躺着很多优质的开发工具,我有个爱好平时遇到感兴趣的开发工具都会记录下来,然后有时间在慢慢研究.前几天刚给同事分享一款非常好用的API文档工具,真的被惊艳到了,粉丝朋友们也感受一下吧 ...

  5. yum安装软件时,出现"No package XXX available"的解决办法

    第一种: 依次执行以下命令解决 1,cd /home 2,wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noa ...

  6. sql 语句实现实现特殊查询 总结

    统计某一字段不为空 select count(*) from 表名 where 字段名 is not null 统计某一字段为空 select count(*) from 表名 where 字段名 i ...

  7. 【小实验】rust的数组是在堆上分配还是在栈上分配的呢?

    先看代码: fn main(){ let v = [1,2,3,4,5]; let addr = &v[0] as *const i32 as usize; println!("ar ...

  8. Cesium入门8 - Configuring the Scene - 配置视窗

    Cesium入门8 - Configuring the Scene - 配置视窗 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coini ...

  9. 🏆【Alibaba中间件技术系列】「Nacos技术专题」配置中心加载原理和配置实时更新原理分析(上)

    官方资源 https://nacos.io/zh-cn/docs/quick-start.html Nacos之配置中心 动态配置管理是 Nacos的三大功能之一,通过动态配置服务,可以在所有环境中以 ...

  10. 华为联运游戏审核驳回:在未安装或需更新HMS Core的手机上,提示安装,点击取消后,游戏卡屏(集成的6.1.0.301版本游戏SDK)

    问题描述 更新游戏SDK到6.1.0.301版本之后,游戏包被审核驳回:在未安装或需更新华为移动服务版本(HMS Core)的手机上,提示安装华为移动服务(HMS Core),点击取消,游戏卡屏.修改 ...