\(\mathcal{Description}\)

  Link (hard) & Link (easy).

  这是一道交互题。

  给定一棵 \(n\) 个结点的树,其中有两个是特殊结点。每次你可以提出形如 \(x~c_1~c_2~\cdots~c_x\) 的询问,交互器会回答在点集 \(\{c_x\}\) 中,到两个特殊结点距离之和最小的结点 \(p\) 和这个最小距离和 \(d\)(若有多个 \(d\),回答任意一个)。你需要猜出两个特殊结点的编号。

  \(n\le10^3\),\(T\le10\) 组数据,询问次数上限为 \(11\) 次。

\(\mathcal{Solution}\)

  第一次询问,显然问所有的 \(n\) 个点,就能得到特殊点 \(x,y\) 间的距离 \(d\) 和 \(x,y\) 路径上的一个结点 \(p\)。

  以 \(p\) 为根,\(x,y\) 显然在 \(p\) 的两棵子树内。接下来,以 \(p\) 为圆心“画圆”——询问所有到 \(p\) 的距离为某一定值 \(l\) 的点集,就能得到一个新的距离 \(d'\)。若 \(d'=d\),说明 \(x,y\) 离 \(p\) 较远的一个点到 \(p\) 的距离 \(\ge d'\),否则,就 \(<d'\),所以可以二分 \(l\),花 \(\mathcal O(\log n)\) 次询问找到离 \(p\) 较远的那个特殊点。

  最后,设较远点 \(x\) 到 \(p\) 的距离为 \(l\),把到 \(p\) 距离为 \(d-l\) 的所有点拿出来再问一次就得到另一个特殊点 \(y\) 了(注意排除掉在 \(p\) 到 \(x\) 路径上的点)。

  但是,最坏情况会有 \(1+\lceil\log_210^5\rceil+1=12\) 次询问,刚好多一次 qwq。

  不过二分找到是“较远点”,所以其到 \(p\) 的距离一定在 \([\lfloor\frac{d}2\rfloor,d]\) 之间,取这个区间作为二分上下界。其大小显然不超过 \(\frac{n}2\),所以刚好能节约一次二分的询问。

  复杂度 \(\mathcal O(Tn)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <vector>
#include <assert.h> inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} const int MAXN = 1000;
int n, ecnt, mxd, head[MAXN + 5], fa[MAXN + 5], dep[MAXN + 5];
std::vector<int> all, eqdis[MAXN + 5];
bool ban[MAXN + 5]; struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
} inline void collect ( const int u, const int d ) {
eqdis[dep[u] = d].push_back ( u ), mxd = d < mxd ? mxd : d;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, collect ( v, d + 1 );
}
}
} inline void inter ( const std::vector<int>& pts, int& p, int& dis ) {
if ( pts.empty () ) return void ( p = dis = 0 );
printf ( "? %d", ( int ) pts.size () );
for ( int u: pts ) printf ( " %d", u );
putchar ( '\n' ), fflush ( stdout );
assert ( ~( p = rint (), dis = rint () ) );
} inline void clear () {
ecnt = mxd = 0, all.clear (), eqdis[0].clear ();
for ( int i = 1; i <= n; ++ i ) {
head[i] = dep[i] = fa[i] = ban[i] = 0;
eqdis[i].clear ();
}
} int main () {
char rep[20];
for ( int T = rint (); T --; ) {
clear ();
n = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
all.push_back ( i );
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
int p, dis;
all.push_back ( n ), inter ( all, p, dis );
collect ( p, 0 );
int l = dis + 1 >> 1, r = mxd < dis ? mxd : dis, S = 0;
while ( l < r ) {
int mid = l + r + 1 >> 1, curp, curd;
inter ( eqdis[mid], curp, curd );
if ( curd > dis ) r = mid - 1;
else S = curp, l = mid;
}
if ( !S ) inter ( eqdis[l], S, r );
int oth = dis - dep[S], Q, tmp;
for ( int u = S; u ^ p; u = fa[u] ) ban[u] = true;
for ( auto it ( eqdis[oth].begin () ); it != eqdis[oth].end (); ++ it ) {
if ( ban[*it] ) {
eqdis[oth].erase ( it );
break;
}
}
inter ( eqdis[oth], Q, tmp );
printf ( "! %d %d\n", S, Q ), fflush ( stdout );
scanf ( "%s", rep ), assert ( rep[0] == 'C' );
}
return 0;
}

\(\mathcal{Details}\)

  一眼出 \(12\) 次询问的方法然后卡了半天 qwq……养成卡二分上下界的习惯对常数有极大好处。(

Solution -「CF 1370F2」The Hidden Pair (Hard Version)的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  3. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  4. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  5. Solution -「CF 757F」Team Rocket Rises Again

    \(\mathcal{Description}\)   link.   给定 \(n\) 个点 \(m\) 条边的无向图和一个源点 \(s\).要求删除一个不同与 \(s\) 的结点 \(u\),使得 ...

  6. Solution -「CF 802C」Heidi and Library (hard)

    \(\mathcal{Descriptoin}\)   Link.   你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\).如果你的书架里没有这本书 ...

  7. Solution -「CF 793G」Oleg and Chess

    \(\mathcal{Description}\)   Link.   给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车.   ...

  8. Solution -「CF 1119F」Niyaz and Small Degrees

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 ...

  9. Solution -「CF 1480G」Clusterization Counting

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 阶完全图,边权为 \(1\sim\frac{n(n-1)}2\) 的排列.称一种将点集划分为 \(k\) ...

随机推荐

  1. NIO【同步非阻塞io模型】关于 NIO socket 的详细总结【Java客户端+Java服务端 + 业务层】【可以客户端间发消息】

    1.前言 以前使用 websocket来实现双向通信,如今深入了解了 NIO 同步非阻塞io模型 , 优势是 处理效率很高,吞吐量巨大,能很快处理大文件,不仅可以 做 文件io操作, 还可以做sock ...

  2. PPT制作图片磨砂玻璃艺术效果

    如果图片损害,点击链接:https://www.toutiao.com/i6488928834799272462/ 选择"插入"选项卡,"图像"功能组,&quo ...

  3. vue3.0+vite+ts项目搭建(报错处理)

    报错一 warning package.json: No license field$ vue-tsc --noEmit && vite build 解决方案,添加这两行,只添加一个是 ...

  4. testng.xml 执行多个测试用例

    1.在工程名字上点击右键,点击[New]-->[File] 2.在弹出的[New File]对话框中的[File name]输入[testng.xml],点击[Finish]即创建了一个test ...

  5. Elasticsearch基础知识学习

    概要 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Ap ...

  6. Spring循环依赖原理

    Spring循环依赖的原理解析 1.什么是循环依赖? ​ 我们使用Spring的时候,在一个对象中注入另一个对象,但是另外的一个对象中也包含该对象.如图: 在Student中包含了teacher的一个 ...

  7. linux与shell介绍 - 进程与线程

    linux linux与windows的区别 linux的文件结构 Linux基本命令 ls: 列出目录 cd: 切换目录 pwd: 显示当前目录 mkdir: 创建一个新的目录 rmdir: 删除一 ...

  8. IO_FILE——FSOP、house of orange

    FSOP 是 File Stream Oriented  Programming 的缩写.所有的 _IO_FILE 结构会由 _chain 字段连接形成一个链表,由 _IO_list_all 来维护. ...

  9. 【练习】rust中的复制语义和移动语义

    1.基本类型都是复制语义的 fn main(){ let a = 123; { #[allow(unused_variables)] let b = a; //如果是移动语义,那么后续的a将不再有效 ...

  10. 【记录一个问题】golang神坑,明明返回了接口指针类型的nil值,却无法用if判断

    先看看导致异常的代码: package main import ( "fmt" "log" ) type MyError1 struct{ MyErrorCod ...