Solution -「CF 1370F2」The Hidden Pair (Hard Version)
\(\mathcal{Description}\)
这是一道交互题。
给定一棵 \(n\) 个结点的树,其中有两个是特殊结点。每次你可以提出形如 \(x~c_1~c_2~\cdots~c_x\) 的询问,交互器会回答在点集 \(\{c_x\}\) 中,到两个特殊结点距离之和最小的结点 \(p\) 和这个最小距离和 \(d\)(若有多个 \(d\),回答任意一个)。你需要猜出两个特殊结点的编号。
\(n\le10^3\),\(T\le10\) 组数据,询问次数上限为 \(11\) 次。
\(\mathcal{Solution}\)
第一次询问,显然问所有的 \(n\) 个点,就能得到特殊点 \(x,y\) 间的距离 \(d\) 和 \(x,y\) 路径上的一个结点 \(p\)。
以 \(p\) 为根,\(x,y\) 显然在 \(p\) 的两棵子树内。接下来,以 \(p\) 为圆心“画圆”——询问所有到 \(p\) 的距离为某一定值 \(l\) 的点集,就能得到一个新的距离 \(d'\)。若 \(d'=d\),说明 \(x,y\) 离 \(p\) 较远的一个点到 \(p\) 的距离 \(\ge d'\),否则,就 \(<d'\),所以可以二分 \(l\),花 \(\mathcal O(\log n)\) 次询问找到离 \(p\) 较远的那个特殊点。
最后,设较远点 \(x\) 到 \(p\) 的距离为 \(l\),把到 \(p\) 距离为 \(d-l\) 的所有点拿出来再问一次就得到另一个特殊点 \(y\) 了(注意排除掉在 \(p\) 到 \(x\) 路径上的点)。
但是,最坏情况会有 \(1+\lceil\log_210^5\rceil+1=12\) 次询问,刚好多一次 qwq。
不过二分找到是“较远点”,所以其到 \(p\) 的距离一定在 \([\lfloor\frac{d}2\rfloor,d]\) 之间,取这个区间作为二分上下界。其大小显然不超过 \(\frac{n}2\),所以刚好能节约一次二分的询问。
复杂度 \(\mathcal O(Tn)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <vector>
#include <assert.h>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
const int MAXN = 1000;
int n, ecnt, mxd, head[MAXN + 5], fa[MAXN + 5], dep[MAXN + 5];
std::vector<int> all, eqdis[MAXN + 5];
bool ban[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline void collect ( const int u, const int d ) {
eqdis[dep[u] = d].push_back ( u ), mxd = d < mxd ? mxd : d;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, collect ( v, d + 1 );
}
}
}
inline void inter ( const std::vector<int>& pts, int& p, int& dis ) {
if ( pts.empty () ) return void ( p = dis = 0 );
printf ( "? %d", ( int ) pts.size () );
for ( int u: pts ) printf ( " %d", u );
putchar ( '\n' ), fflush ( stdout );
assert ( ~( p = rint (), dis = rint () ) );
}
inline void clear () {
ecnt = mxd = 0, all.clear (), eqdis[0].clear ();
for ( int i = 1; i <= n; ++ i ) {
head[i] = dep[i] = fa[i] = ban[i] = 0;
eqdis[i].clear ();
}
}
int main () {
char rep[20];
for ( int T = rint (); T --; ) {
clear ();
n = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
all.push_back ( i );
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
int p, dis;
all.push_back ( n ), inter ( all, p, dis );
collect ( p, 0 );
int l = dis + 1 >> 1, r = mxd < dis ? mxd : dis, S = 0;
while ( l < r ) {
int mid = l + r + 1 >> 1, curp, curd;
inter ( eqdis[mid], curp, curd );
if ( curd > dis ) r = mid - 1;
else S = curp, l = mid;
}
if ( !S ) inter ( eqdis[l], S, r );
int oth = dis - dep[S], Q, tmp;
for ( int u = S; u ^ p; u = fa[u] ) ban[u] = true;
for ( auto it ( eqdis[oth].begin () ); it != eqdis[oth].end (); ++ it ) {
if ( ban[*it] ) {
eqdis[oth].erase ( it );
break;
}
}
inter ( eqdis[oth], Q, tmp );
printf ( "! %d %d\n", S, Q ), fflush ( stdout );
scanf ( "%s", rep ), assert ( rep[0] == 'C' );
}
return 0;
}
\(\mathcal{Details}\)
一眼出 \(12\) 次询问的方法然后卡了半天 qwq……养成卡二分上下界的习惯对常数有极大好处。(
Solution -「CF 1370F2」The Hidden Pair (Hard Version)的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
- Solution -「CF 757F」Team Rocket Rises Again
\(\mathcal{Description}\) link. 给定 \(n\) 个点 \(m\) 条边的无向图和一个源点 \(s\).要求删除一个不同与 \(s\) 的结点 \(u\),使得 ...
- Solution -「CF 802C」Heidi and Library (hard)
\(\mathcal{Descriptoin}\) Link. 你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\).如果你的书架里没有这本书 ...
- Solution -「CF 793G」Oleg and Chess
\(\mathcal{Description}\) Link. 给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车. ...
- Solution -「CF 1119F」Niyaz and Small Degrees
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 ...
- Solution -「CF 1480G」Clusterization Counting
\(\mathcal{Description}\) Link. 给定一个 \(n\) 阶完全图,边权为 \(1\sim\frac{n(n-1)}2\) 的排列.称一种将点集划分为 \(k\) ...
随机推荐
- Zabbix忘记用户名和密码的解决方法
问题描述: 最近刚搭建了zabbix服务器,然后新增加了一个用户,并且把默认的Admin禁用了.然后这个监控页面一直没关,保持了10多天,今天不小心把浏览器关闭了,重新打开后,突然忘记了用户名,这下麻 ...
- 使用HTMLTestRunner在目标目录下并未生成HTML文件解决办法
使用pycharm工具应用HTMLTestRunner模块时,测试用例可以顺利运行,但在目标目录下并未生成HTML文件.使用python的IDLE,能够正常运行并创建写入测试结果. 测试环境:pyth ...
- 今天太开心了,因为我知道了seastar框架
今天听说了一个新的C++语言开发的网络框架,叫做seastar. seastar有何特别之处呢?先看看官网提供的性能数据: 性能 HTTPD benchmark: cpu # request/sec ...
- k8s-storage-class
1. 简介 StorageClass 为管理员提供了描述存储 "类" 的方法. 通过StorageClass的定义,管理员可以将存储资源定义为某种类别(Class),正如存储设备对 ...
- Express框架的简单使用
Express框架的简单使用 这个框架是基于Node.js的框架平台 需要先安装node.js 安装完node.js后使用指令操作 npm init --yes 初始化 npm i express 安 ...
- Rust 使用 dotenv 来设置环境变量
在项目中,我们通常需要设置一些环境变量,用来保存一些凭证或其它数据,这时我们可以使用 dotenv 这个 crate. 首先在项目中添加 dotenv 这个依赖: 例如在下面这个项目中,需要设置数据库 ...
- vue 快速入门 系列 —— 侦测数据的变化 - [vue api 原理]
其他章节请看: vue 快速入门 系列 侦测数据的变化 - [vue api 原理] 前面(侦测数据的变化 - [基本实现])我们已经介绍了新增属性无法被侦测到,以及通过 delete 删除数据也不会 ...
- hostnamectl主机名
hostnamectl 可用于查询与修改系统主机名以及其他相关设置. 所谓"主机名",其实有三种不同的含义: "pretty"主机名,仅供人类阅读,可以包含各种 ...
- 【程序18】求s=a+aa+aaa+aaaa+aa...a的值
求s=a+aa+aaa+aaaa+aa-a的值,其中a是一个数字.例如2+22+222+2222+22222(此时共有5个数相加),几个数相加由键盘控制. 知识点:在Python 3里,reduce( ...
- 重启WAS实例
/opt/IBM/WebSphere90/AppServer/profiles/appprofile/bin/startServer.sh DASMGW01IDHK-AS01 /opt/IBM/Web ...