\(\mathcal{Description}\)

  Link (hard) & Link (easy).

  这是一道交互题。

  给定一棵 \(n\) 个结点的树,其中有两个是特殊结点。每次你可以提出形如 \(x~c_1~c_2~\cdots~c_x\) 的询问,交互器会回答在点集 \(\{c_x\}\) 中,到两个特殊结点距离之和最小的结点 \(p\) 和这个最小距离和 \(d\)(若有多个 \(d\),回答任意一个)。你需要猜出两个特殊结点的编号。

  \(n\le10^3\),\(T\le10\) 组数据,询问次数上限为 \(11\) 次。

\(\mathcal{Solution}\)

  第一次询问,显然问所有的 \(n\) 个点,就能得到特殊点 \(x,y\) 间的距离 \(d\) 和 \(x,y\) 路径上的一个结点 \(p\)。

  以 \(p\) 为根,\(x,y\) 显然在 \(p\) 的两棵子树内。接下来,以 \(p\) 为圆心“画圆”——询问所有到 \(p\) 的距离为某一定值 \(l\) 的点集,就能得到一个新的距离 \(d'\)。若 \(d'=d\),说明 \(x,y\) 离 \(p\) 较远的一个点到 \(p\) 的距离 \(\ge d'\),否则,就 \(<d'\),所以可以二分 \(l\),花 \(\mathcal O(\log n)\) 次询问找到离 \(p\) 较远的那个特殊点。

  最后,设较远点 \(x\) 到 \(p\) 的距离为 \(l\),把到 \(p\) 距离为 \(d-l\) 的所有点拿出来再问一次就得到另一个特殊点 \(y\) 了(注意排除掉在 \(p\) 到 \(x\) 路径上的点)。

  但是,最坏情况会有 \(1+\lceil\log_210^5\rceil+1=12\) 次询问,刚好多一次 qwq。

  不过二分找到是“较远点”,所以其到 \(p\) 的距离一定在 \([\lfloor\frac{d}2\rfloor,d]\) 之间,取这个区间作为二分上下界。其大小显然不超过 \(\frac{n}2\),所以刚好能节约一次二分的询问。

  复杂度 \(\mathcal O(Tn)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <vector>
#include <assert.h> inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} const int MAXN = 1000;
int n, ecnt, mxd, head[MAXN + 5], fa[MAXN + 5], dep[MAXN + 5];
std::vector<int> all, eqdis[MAXN + 5];
bool ban[MAXN + 5]; struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
} inline void collect ( const int u, const int d ) {
eqdis[dep[u] = d].push_back ( u ), mxd = d < mxd ? mxd : d;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, collect ( v, d + 1 );
}
}
} inline void inter ( const std::vector<int>& pts, int& p, int& dis ) {
if ( pts.empty () ) return void ( p = dis = 0 );
printf ( "? %d", ( int ) pts.size () );
for ( int u: pts ) printf ( " %d", u );
putchar ( '\n' ), fflush ( stdout );
assert ( ~( p = rint (), dis = rint () ) );
} inline void clear () {
ecnt = mxd = 0, all.clear (), eqdis[0].clear ();
for ( int i = 1; i <= n; ++ i ) {
head[i] = dep[i] = fa[i] = ban[i] = 0;
eqdis[i].clear ();
}
} int main () {
char rep[20];
for ( int T = rint (); T --; ) {
clear ();
n = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
all.push_back ( i );
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
int p, dis;
all.push_back ( n ), inter ( all, p, dis );
collect ( p, 0 );
int l = dis + 1 >> 1, r = mxd < dis ? mxd : dis, S = 0;
while ( l < r ) {
int mid = l + r + 1 >> 1, curp, curd;
inter ( eqdis[mid], curp, curd );
if ( curd > dis ) r = mid - 1;
else S = curp, l = mid;
}
if ( !S ) inter ( eqdis[l], S, r );
int oth = dis - dep[S], Q, tmp;
for ( int u = S; u ^ p; u = fa[u] ) ban[u] = true;
for ( auto it ( eqdis[oth].begin () ); it != eqdis[oth].end (); ++ it ) {
if ( ban[*it] ) {
eqdis[oth].erase ( it );
break;
}
}
inter ( eqdis[oth], Q, tmp );
printf ( "! %d %d\n", S, Q ), fflush ( stdout );
scanf ( "%s", rep ), assert ( rep[0] == 'C' );
}
return 0;
}

\(\mathcal{Details}\)

  一眼出 \(12\) 次询问的方法然后卡了半天 qwq……养成卡二分上下界的习惯对常数有极大好处。(

Solution -「CF 1370F2」The Hidden Pair (Hard Version)的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  3. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  4. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  5. Solution -「CF 757F」Team Rocket Rises Again

    \(\mathcal{Description}\)   link.   给定 \(n\) 个点 \(m\) 条边的无向图和一个源点 \(s\).要求删除一个不同与 \(s\) 的结点 \(u\),使得 ...

  6. Solution -「CF 802C」Heidi and Library (hard)

    \(\mathcal{Descriptoin}\)   Link.   你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\).如果你的书架里没有这本书 ...

  7. Solution -「CF 793G」Oleg and Chess

    \(\mathcal{Description}\)   Link.   给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车.   ...

  8. Solution -「CF 1119F」Niyaz and Small Degrees

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 ...

  9. Solution -「CF 1480G」Clusterization Counting

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 阶完全图,边权为 \(1\sim\frac{n(n-1)}2\) 的排列.称一种将点集划分为 \(k\) ...

随机推荐

  1. js实现工具函数中groupBy数据分组

    数据 this.tableData = [ {id: 1, name: '测试', number: 1, price: 0}, {id: 2, name: '测试', number: 1, price ...

  2. CMake与OpenMP

    CMake与OpenMP cmake_minimum_required (VERSION 2.6) project (TEST) set (TEST_VERSION 0.1) set(CMAKE_BU ...

  3. 1010day-人口普查系统

    1.xiugai.java package com.edu.ia; import java.io.IOException;import java.sql.SQLException; import ja ...

  4. 利用词向量进行推理(Reasoning with word vectors)

    The amazing power of word vectors | the morning paper (acolyer.org) What is a word vector? At one le ...

  5. 003Linux查看文件内容的5个命令姿势

    01 开篇 Linux 中查看文件内容常用的有如下 5 个命令: cat: more: less: tail: head. 02依次看看这些命令的使用姿势 cat 一次性将所有内容输出到屏幕上,方便查 ...

  6. electron-vue 项目添加启动loading动画问题

    前言 electron-vue脚手架搭建的项目,在开发阶段可能你注意不到项目启动慢的问题,但是在build 生成的exe可执行文件,启动后,要反应很久才能进入到app.vue 中加载的页面,体验性很差 ...

  7. Power Apps 创建响应式布局

    前言 我们都知道Power Apps作为低代码平台,最大的优势就是各个设备之间的兼容性,尤其是自带的响应式布局,非常好用. 这不,我们就为大家分享一下,如何使用Power Apps画布应用,创建响应式 ...

  8. host文件以及host的作用

    什么是HOST文件:Hosts是一个没有扩展名的系统文件,其基本作用就是将一些常用的网址域名与其对应的IP地址建立一个关联"数据库",当用户在浏览器中输入一个需要登录的网址时,系统 ...

  9. sql 同步远程数据库(表)到本地

    一)在同一个数据库服务器上面进行数据表间的数据导入导出: 1. 如果表tb1和tb2的结构是完全一样的,则使用以下的命令就可以将表tb1中的数据导入到表tb2中: insert into db2.tb ...

  10. js 斐波那契数列的获取和曲线的实现(每日一更)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...