系列随笔:

(总览)基于商品属性的相似商品推荐算法

(一)基于商品属性的相似商品推荐算法——整体框架及处理流程

(二)基于商品属性的相似商品推荐算法——Flink SQL实时计算实现商品的隐式评分

(三)基于商品属性的相似商品推荐算法——批量处理商品属性,得到属性前缀及完整属性字符串

(四)基于商品属性的相似商品推荐算法——推荐与评分高的商品属性相似的商品

(五)基于商品属性的相似商品推荐算法——算法调优及其他

2020.04.15  补充:协同过滤推荐算法.pptx

提取码:4tds

注:如果你没有使用日志埋点和实时计算(接口直接累计也是可行的),你可以直接跳到这一节~

Flink SQL实时计算实现商品的隐匿评分


一、导入log service日志源表

二、导入评分配置维度表(用户行为的评分配置)

三、导入用户商品评分维表

四、用户评分结果表

四、预处理日志数据

-- 处理日志数据
CREATE VIEW probe_log0_view AS
SELECT
t1.cid,
CAST(memberCode as INT) as memberCode,
t1.event,
t1.eventApp,
TO_TIMESTAMP(CAST(CAST(__timestamp__ as DOUBLE) as BIGINT)*1000) as eventTime,
CAST(IF (SUBSTRING(t1.eventProps,0,1)='%', REGEXP_EXTRACT(t1.eventProps, concat(t2.code_name,'\\%22:(\\d+),'), 1), JSON_VALUE (t1.eventProps, concat('$.',t2.code_name))) as INT) as goodsCode,
t2.score
FROM
probe_log0 t1
LEFT JOIN rc_config_dimension FOR SYSTEM_TIME AS OF PROCTIME() AS t2
ON t1.event=t2.event AND t2.status=1
WHERE
t1.event IN ('viewGoods','shareGoods','collectGoods','addToCart');

注:eventProps为埋点的扩展json数据,因为小程序的埋点不太规范,所以加了额外的判断;正常来说,直接使用 JSON_VALUE 函数即可

五、写入结果表

-- 入库
INSERT INTO rc_member_goods
(member_code,
cid,
goods_code,
score,
update_time)
SELECT
t1.memberCode,
t1.cid,
t1.goodsCode,
CAST(IF(t2.score IS NOT NULL, t2.score, 0) + SUM(t1.score) as INT) AS score,
MAX(t1.eventTime) as update_time
FROM
probe_log0_view t1
LEFT JOIN rc_member_goods_dimension FOR SYSTEM_TIME AS OF PROCTIME() AS t2
ON t1.memberCode=t2.member_code AND t1.cid=t2.cid AND t1.goodsCode=t2.goods_code
WHERE
t1.goodsCode IS NOT NULL
AND (t1.eventTime > t2.update_time OR t2.update_time IS NULL)
GROUP BY
t1.memberCode,
t1.cid,
t1.goodsCode,
t2.score;

注:这里的难点在于 CAST(IF(t2.score IS NOT NULL, t2.score, 0) + SUM(t1.score) as INT) AS score 和 AND (t1.eventTime > t2.update_time OR t2.update_time IS NULL)

意思是:如果rc_member_goods表中没有记录的,就直接加入;如果 rc_member_goods 中有记录的,则判断 eventTime 是否大于 上前的更新时间(防止重复更新),最后累计上当前的日志分

PS:如果没有 t2.update_time IS NULL 则左连接会变成 left outer join

上一节:(一)基于商品属性的相似商品推荐算法——整体框架及处理流程

下一节:(三)基于商品属性的相似商品推荐算法——批量处理商品属性,得到属性前缀及完整属性字符串

(二)基于商品属性的相似商品推荐算法——Flink SQL实时计算实现商品的隐式评分的更多相关文章

  1. 美团网基于机器学习方法的POI品类推荐算法

    美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标 ...

  2. mysql颠覆实战笔记(六)--商品系统设计(三):商品属性设计之固定属性

    今天我们来讲一下商品属性 我们知道,不同类别的商品属性是不同的. 我们先建一个表prod_class_attr:

  3. SparkMLlib—协同过滤推荐算法,电影推荐系统,物品喜好推荐

    SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息( ...

  4. [推荐]ORACLE PL/SQL编程之四:把游标说透(不怕做不到,只怕想不到)

    原文:[推荐]ORACLE PL/SQL编程之四:把游标说透(不怕做不到,只怕想不到) [推荐]ORACLE PL/SQL编程之四: 把游标说透(不怕做不到,只怕想不到) 继上两篇:ORACLE PL ...

  5. 基于Kafka的实时计算引擎如何选择?Flink or Spark?

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  6. 基于Kafka的实时计算引擎如何选择?(转载)

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  7. SQL自连接(源于推荐算法中的反查表问题)

    ”基于用户的协同过滤算法“是推荐算法的一种,这类算法强调的是:把和你有相似爱好的其他的用户的物品推荐给你. 要实现该推荐算法,就需要计算和你有交集的用户,这就要用到物品到用户的反查表. 先举个例子说明 ...

  8. SimRank协同过滤推荐算法

    在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...

  9. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

随机推荐

  1. flutter 使用vs编辑windows插件

    创建插件 mkdir win_test && cd win_test flutter create -t plugin --platforms windows ./ 找到win_tes ...

  2. 使用 Tye 辅助开发 k8s 应用竟如此简单(四)

    续上篇,这篇我们来进一步探索 Tye 更多的使用方法.本篇我们来了解一下如何在 Tye 中如何进行日志的统一管理. Newbe.Claptrap 是一个用于轻松应对并发问题的分布式开发框架.如果您是首 ...

  3. 将日志发送到log日志文件中

    log.debug("toUser:"+toUser+",subject:"+subject+",content:"+content);

  4. Redis集群简介及部署

    1简介 在 Redis 3.0 之前,使用 哨兵(sentinel)机制来监控各个节点之间的状态.Redis Cluster 是 Redis 的 分布式解决方案,在 3.0 版本正式推出,有效地解决了 ...

  5. CSS实现页面切换时的滑动效果

    最近在开发手机端APP页面功能时遇到一个需求:某个页面查询的数据有三种分类,需要展示在同一页面上,用户通过点击分类标签来查看不同类型的数据, 期望效果是 用户点击标签切换时另一个页面能够以一个平滑切入 ...

  6. Java基本概念:内部类

    一.简介 描述: 很多时候我们创建类的对象的时候并不需要使用很多次,每次只使用一次,这个时候我们就可以使用内部类了. 内部类不是在一个java源文件中编写两个平行的类,而是在一个类的内部再定义另外一个 ...

  7. web前端学习笔记(python)(一)

    瞎JB搞]感觉自己全栈了,又要把数据库里面的内容,以web形式展示出来,并支持数据操作.占了好多坑.....慢慢填(主要参考廖雪峰的官网,不懂的再百度) 一.web概念 Client/Server模式 ...

  8. while、do...while和for循环

    一.循环 1.1 定义 当满足一定条件的时候,重复执行某一段代码的操作 while和for和do...while是java中的循环 二.while循环 2.1 定义 int i = 0: 初始化值 w ...

  9. 《吃透MQ系列》核心基础全在这里了

    这是<吃透XXX>技术系列的开篇,这个系列的思路是:先找到每个技术栈最本质的东西,然后以此为出发点,逐渐延伸出其他核心知识.所以,整个系列侧重于思考力的训练,不仅仅是讲清楚 What,而是 ...

  10. 剑指 Offer 63. 股票的最大利润 + 动态规划

    剑指 Offer 63. 股票的最大利润 Offer_63 题目描述 方法一:暴力法 package com.walegarrett.offer; /** * @Author WaleGarrett ...