博客主要结构

1. 如何在ubuntu18.04上安装yolo

2 .如何配置yolov3

3 .如何制作自己的训练集测试集

4 .如何在自己的数据集上运行yolov3

1. 在ubuntu18.04下安装yolov3

安装darknet

按ctrl+atl+t 打开终端, 并在终端下依次输入以下命令

git clone https://github.com/pjreddie/darknet.git
cd darknet
make  

如果成功的话你会看到以下信息

mkdir -p obj
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
.....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast -lm....

编译完成后键入以下命令运行darknet

./darknet

你将会看到以下输出结果

usage: ./darknet <function>

使用GPU编译(可选)

如果想让yolo运行的更快的话, 可以使用GPU 加速。你的电脑中应该有Nvidia GPU并安装cuda。 在安装完cuda后,在本目录下修改 Makefile第一行

GPU=1

然后在终端键入

make

这样就可以使用cuda啦, darknet在默认情况下会使用你系统里第零个块显卡 (如果你成功安装了cuda, 在终端输入nvidia-smi可以看到自己的显卡情况)。 如果你想修改darknet可以使用的显卡,你可以给他一个可选的命令 -i <index>, 例如

./darknet -i 1 imagenet test cfg/alexnet.cfg alexnet.weights

这样darknet就会使用你的第一块显卡。

下载pre-trained model

可以在这里下载预训练模型, 或者在终端输入以下命令

wget https://pjreddie.com/media/files/yolov3.weights

然后训练你的detector

./darknet detect cfg/yolov3.cfg yolov3.weights data/eagle.jpg

正常情况下你会看到如下输出

                          

                           

darknet会把他的检测的结果, 以及confidence输出出来,因为我没有在darknet下编译opencv所以检测结果不会直接显示出来, 他会把这个结果保存在你的darknet目录下。

2 .配置yolov3

在darknet目录下创建一个dataset子目录, 并在dataset中创建yolo-tiny-obj.cfg 文件, 文件内容与yolov3_tiny.cfg(在darknet/cfg文件夹下)相同(可以直接把yolov3_tiny.cfg的文件内容复制过去), 然后

  • 把batch所在行修改为batch=64
  • 把subdivision设置为8
  • 在每个[yolo]-层, 把classes=80修改成你要检测的类的数量

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg#L135

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg#L176

  • 在每个[yolo]-层前的[convolution]-层中,修改filters=255, 改成filters=(classes+5)*3(只适用于yolov3, 对于yolov2如何计算filters,google/百度一下)

    https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg#L127

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg#L171

因此如果classes=1, 那么filters=18, 如果classes=2, 那么filters=21

(不要在cfg文件里这样写:filters=(classes+5)*3)

(一般情况下, filters取决于classes, coords, 以及mask的数量, 例如filters = (classes+coords+1)*<numbers of mask>, 这里的mask就是anchors的索引, 如果没有mask, 那么filters=(classes+coords+1)*num)

比如, 只有两个类, 那么你的yolo-tiny-obj.cfg 在每个yolo层中应该是如下设置

[convolutional]
filters=21 [region]
classes=2

在/darknet/dataset创建obj.names文件, 每行是你的类的名字, 如果你要检测的是猫和狗, 那么你的obj.names文件内容如下

cat
dog

在/darknet/dataset创建obj.data文件, 包含如下内容, (classes=你要检测的类的数量)

classes= 2
train = dataset/train.txt
valid = dataset/test.txt
names = dataset/obj.names
backup = backup/

3. 制作自己的训练集测试集

首先把你的训练集(测试集)图片放到/darknet/dataset/Train (/darknet/dataset/Test ) , 图片扩展名为.jpg

然后对你数据集图片上的每个物体作标记,你可以用这个工具在图片上画边框, 并生成标记文件。他会在同一个目录下,给每个.jpg文件生成一个名字相同的.txt文件,文件里应该包含物体的类的编号, 以及物体在图片中的坐标,每一行都表示一个物体 <物体类的编号><x_center> <y_center> <width> <height>

  • <类的编号> :是正整数, 从0-<类的数目-1>
  • <x_center> <y_center> <width> <height> :都是浮点数范围从0到1,通过图片的长宽计算得出,例如<y_center>=<边框中心的纵坐标>/图片的高,<height> = <边框的高>/图片的高
  • 注意<x_center> <y_center>:是你画得边框的中心

比如对于img1.jpg你会创建一个img1.txt文件,包含以下内容

1 0.716797 0.395833 0.216406 0.147222
0 0.687109 0.379167 0.255469 0.158333
1 0.420312 0.395833 0.140625 0.166667

在/darknet/dataset目录下创建train.txt文件,文件中每一行都是到你训练集的地址, 可以使绝对路径, 也可以是相对路径, (相对darknet这个文件夹的路径), 例如文件内容如下

dataset/Train/img1.jpg
dataset/Train/img2.jpg
dataset/Train/img3.jpg

这里你需要重新根据你自己的数据集计算anchors值, 可以参开这个python script来计算, 然后把yolo-tiny-obj.cfg文件中的anchors值替换成你计算的结果

4 .在自己的数据集上运行yolov3

下载yolov3-tiny的权重文件:https://pjreddie.com/media/files/yolov3-tiny.weights 到darknet目录下

在终端输入以下命令得到预训练模型yolov3-tiny.conv.15

./darknet partial dataset/yolo-tiny-obj.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15

输入以下命令开始训练

./darknet detector train dataset/obj.data dataset/yolo-tiny-obj.cfg yolov3-tiny.conv.15

如果一切正常应该是这样的结果  

                    

如果你运行中出现了nan, 这是正常现象,但如果全部都是nan的话,这就是训练过程出了问题,请仔细检查每一步是否按照操作进行

如何使用yolov3训练自己的数据集的更多相关文章

  1. Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)

    在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...

  2. 第十一节,利用yolov3训练自己的数据集

    1.环境配置 tensorflow1.12.0 Opencv3.4.2 keras pycharm 2.配置yolov3 下载yolov3代码:https://github.com/qqwweee/k ...

  3. Win7+keras+tensorflow使用YOLO-v3训练自己的数据集

    一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 ...

  4. YoLov3训练自己的数据集

    工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManhole ...

  5. Ubuntu16.04中用yolov3训练自己的数据集

    一.配置yolo v3 参考yolo v3官网https://pjreddie.com/darknet/yolo/ 下载darknet后进行编译: git clone https://github.c ...

  6. 利用YOLOV3训练自己的数据

    写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...

  7. 使用yolo3模型训练自己的数据集

    使用yolo3模型训练自己的数据集 本项目地址:https://github.com/Cw-zero/Retrain-yolo3 一.运行环境 1. Ubuntu16.04. 2. TensorFlo ...

  8. 【Tensorflow系列】使用Inception_resnet_v2训练自己的数据集并用Tensorboard监控

    [写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inceptio ...

  9. YOLOv3训练自己的数据

    1.  下载预训练权重文件 YOLOv3使用在Imagenet上预训练好的模型参数(文件名称: darknet53.conv.74,大小76MB)基础上继续训练. darknet53.conv.74下 ...

随机推荐

  1. 如何成为NGK超级节点?

    NGK这个 "超级节点" 到底是什么?什么是超级节点呢? 区块链网络中的每一个节点,其实就是存储数据的每一台电脑或者服务器终端.节点要完成新区块的生产.交易的验证与记帐.因此节点之 ...

  2. 画一个PBN大角度飞越转弯保护区

      今天出太阳了,尽管街上的行人依旧很少,但心情开始不那么沉闷了.朋友圈里除了关注疫情的最新变化之外,很多人已经开始选择读书或是和家人一起渡过这个最漫长的春节假期.陕西广电网络春节期间所有点播节目一律 ...

  3. C++算法代码——扫雷游戏

    题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1685 题目描述 扫雷游戏是一款十分经典的单机小游戏. 在 n 行 m 列的雷区中有一 ...

  4. Docker Tips: 关于/var/run/docker.sock

    本文转载自Docker Tips: 关于/var/run/docker.sock 导语 你可能已经运行过docker hub上的container并且注意到其中的一些需要绑定挂载(mount)/var ...

  5. html5的标签中,哪些是行内元素,哪些是块级元素。

    块级元素:块级大多为结构性标记 <address>...</adderss> <center>...</center>  地址文字 <h1> ...

  6. 搭建Elasticsearch可视化界面 Kibana

    前言 每一个版本的es都有一个对应的Kibana版本,建议和es相同版本,官网地址: 点击进入下载地址 步骤 1.解压 tar -zxvf kibana-7.2.0-linux-x86_64 2.修改 ...

  7. oracle 查锁

    reference:https://www.cnblogs.com/XQiu/p/5212787.html--以下几个为相关表SELECT * FROM v$lock;SELECT * FROM v$ ...

  8. Java流程控制:顺序结构

    一.流程控制 Java中的流程控制语句可以这样分类:顺序结构.选择结构.循环结构.这三种结构就足够解决所有的问题了! 二.顺序结构 描述: Java流程控制的基本结构就是顺序结构,除非特别指明,否则J ...

  9. 用脚手架搭建一个 vue 项目

    一.需要安装 node 环境 下载地址: https://nodejs.org/en/ 中文网: http://nodejs.cn/ 安装后为方便国内使用,可以把 npm 换成 taobao 的 cn ...

  10. 后端程序员之路 48、memcached

    memcached - a distributed memory object caching systemhttp://memcached.org/ Memcached 教程 | 菜鸟教程http: ...