P1243生产产品

 

描述

在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生产的步骤必须严格按顺序执行。由于这N 台机器的性能不同,它们完成每一个步骤的所需时间也不同。机器i完成第j个步骤的时间为T[i,j]。把半成品从一台机器上搬到另一台机器上也需要一定的 时间K。同时,为了保证安全和产品的质量,每台机器最多只能连续完成产品的L个步骤。也就是说,如果有一台机器连续完成了产品的L个步骤,下一个步骤就必 须换一台机器来完成。现在,dd_engi的OI商店有史以来的第一个产品就要开始生产了,那么最短需要多长时间呢?
某日Azuki.7对跃动说:这样的题目太简单,我们把题目的范围改一改
对于菜鸟跃动来说,这是个很困难的问题,他希望你能帮他解决这个问题

格式

输入格式

第一行有四个整数M, N, K, L
下面的N行,每行有M个整数。第I+1行的第J个整数为T[J,I]。

输出格式

输出只有一行,表示需要的最短时间。

样例1

样例输入1[复制]

3 2 0 2
2 2 3
1 3 1

样例输出1[复制]

4

限制

1s

提示

对于50%的数据,N<=5,L<=4,M<=10000
对于100%的数据,N<=5, L<=50000,M<=100000

来源

第一届“OI商店杯” dd_engi原创题目

【思路】

单调队列优化DP。

设f[i][j]表示考虑到第i个步骤,且i步骤由j完成时的最小时间。有转移式:

f[i][j]=min{f[k][p]-sum[k][j]}+sum[i][j],i-L<=k<=i-1

括号内的部分可以用n个单调队列维护。a[][]为辅助数组,

   a[i][j]=min{f[i][k]}-sum[i][j]+K,1<=k<=m

   表示f[i][j]时括号中可以取到的最小值,单调队列j维护区间[i-L,i-1]内a[][j]的最小值。

注意单调队列写法。

  ps:这篇论文很适合入门:http://pan.baidu.com/s/1gexnMwj

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = +;
const int INF = 1e9+1e9; int L[],R[],q[maxn][];
int f[maxn][] , a[maxn][] , b[maxn][];
int n,m,K,lim; void push(int i,int j) {
while(L[j]<R[j] && a[i][j]<=a[q[R[j]-][j]][j]) R[j]--;
q[R[j]++][j]=i;
}
int pop(int i,int j) {
while(L[j]<R[j] && q[L[j]][j]<i-lim) L[j]++;
return a[q[L[j]][j]][j];
}
int read(int& x) {
char c=getchar(); while(!isdigit(c))c=getchar();
x=; while(isdigit(c))x=x*+c-'',c=getchar();
}
int main() {
read(n),read(m),read(K),read(lim);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) {
read(b[j][i]);
b[j][i]+=b[j-][i];
}
for(int j=;j<=m;j++) push(,j);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
f[i][j]=pop(i,j)+b[i][j];
for(int j=;j<=m;j++) { //向单调队列中添加a[i][]
a[i][j]=INF;
for(int k=;k<=m;k++) if(k!=j)
a[i][j]=min(a[i][j],f[i][k]);
a[i][j]=a[i][j]-b[i][j]+K;
push(i,j);
}
}
int ans=f[n][];
for(int i=;i<=m;i++) ans=min(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

vijos P1243 生产产品(单调队列+DP)的更多相关文章

  1. Vijos P1243 生产产品 (单调队列优化DP)

    题意: 必须严格按顺序执行M个步骤来生产一个产品,每一个步骤都可以在N台机器中的任何一台完成.机器i完成第j个步骤的时间为T[i][j].把半成品从一台机器上搬到另一台机器上也需要一定的时间K.每台机 ...

  2. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  3. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  4. zstu 4237 马里奥的求救——(单调队列DP)

    题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...

  5. 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP

    1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...

  6. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  7. codeforces 1077F2. Pictures with Kittens (hard version)单调队列+dp

    被队友催着上(xun)分(lian),div3挑战一场蓝,大号给基佬紫了,结果从D开始他开始疯狂教我做人??表演如何AKdiv3???? 比赛场上:A 2 分钟,B题蜜汁乱计数,结果想得绕进去了20多 ...

  8. 【LOJ#10180】烽火传递 单调队列+dp

    题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...

  9. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

随机推荐

  1. java构造函数也可以用private开头

    private 构造函数一般用于Singleton模式,指的是整个应用只有本类的一个对象,一般这种类都有一个类似getInstance()的方法!下面是一个Singleton的例子:public cl ...

  2. SQL数据库安装

    安装过程中经常出现失败或者提示,那么久要清楚干净所有的数据在重新安装,步骤如下. SQL2008卸载 一.从控制面板卸载 1)点击计算机右下角“开始”,点击“控制面板” 2)点击“卸载程序”. 卸载与 ...

  3. ORACLE 中ROWNUM用法总结!(转)

    对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between...and,只能用以上符号(<.<=.!=),并非说用>,>=,=,be ...

  4. 打造属于前端的Uri解析器

    今天和大家一起讨论一下如何打造一个属于前端的url参数解析器.如果你是一个Web开发工程师,如果你了解过后端开发语言,譬如:PHP,Java等,那么你对下面的代码应该不会陌生: $kw = $_GET ...

  5. c#wiform中KeyDown事件

    当首次按下键盘上某个键时发生事件. 例如 private void Form1_KeyDown(object sender, KeyEventArgs e) { if (e.KeyCode == Ke ...

  6. 静态方法块 static 以及对象属性&类属性的用法

    使用静态块的好处:只要在类被加载时,static块就会被调用,整个过程就调用这么一次,不会在后面的对象处又不断的调用.如果不使用它,就会出现如下问题:new一个对象,我就要调用一次所需的这些内容,重复 ...

  7. SGU 139.Help Needed!

    题意: 判断15数码问题是否有解. 如果0的偏移量和逆序对个数同奇偶则无解. 因为目标状态的偏移量为0,逆序对为15,而0移动的时候偏移量±1,逆序对的改变量为也为奇数. 这就使得偏移量和逆序对数始终 ...

  8. 【POJ1568】【极大极小搜索+alpha-beta剪枝】Find the Winning Move

    Description 4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to bottom) ...

  9. 个人工作记录---工作中遇到的sql查询语句解析

    在工作中写了人生的第一个查询语句,虽然是在原有基础上改的,但仍然学到了不少知识 代码: select distinct m.id, (select z.jianc from model_zuzjg z ...

  10. 数组Api .map()的使用

    之前并没有过多的使用过这个Api,在此记录下对其的理解,方便以后多多使用. 首先是对map的说明: var mappedArray = array.map(callback[, thisObject] ...