P1243生产产品

 

描述

在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生产的步骤必须严格按顺序执行。由于这N 台机器的性能不同,它们完成每一个步骤的所需时间也不同。机器i完成第j个步骤的时间为T[i,j]。把半成品从一台机器上搬到另一台机器上也需要一定的 时间K。同时,为了保证安全和产品的质量,每台机器最多只能连续完成产品的L个步骤。也就是说,如果有一台机器连续完成了产品的L个步骤,下一个步骤就必 须换一台机器来完成。现在,dd_engi的OI商店有史以来的第一个产品就要开始生产了,那么最短需要多长时间呢?
某日Azuki.7对跃动说:这样的题目太简单,我们把题目的范围改一改
对于菜鸟跃动来说,这是个很困难的问题,他希望你能帮他解决这个问题

格式

输入格式

第一行有四个整数M, N, K, L
下面的N行,每行有M个整数。第I+1行的第J个整数为T[J,I]。

输出格式

输出只有一行,表示需要的最短时间。

样例1

样例输入1[复制]

3 2 0 2
2 2 3
1 3 1

样例输出1[复制]

4

限制

1s

提示

对于50%的数据,N<=5,L<=4,M<=10000
对于100%的数据,N<=5, L<=50000,M<=100000

来源

第一届“OI商店杯” dd_engi原创题目

【思路】

单调队列优化DP。

设f[i][j]表示考虑到第i个步骤,且i步骤由j完成时的最小时间。有转移式:

f[i][j]=min{f[k][p]-sum[k][j]}+sum[i][j],i-L<=k<=i-1

括号内的部分可以用n个单调队列维护。a[][]为辅助数组,

   a[i][j]=min{f[i][k]}-sum[i][j]+K,1<=k<=m

   表示f[i][j]时括号中可以取到的最小值,单调队列j维护区间[i-L,i-1]内a[][j]的最小值。

注意单调队列写法。

  ps:这篇论文很适合入门:http://pan.baidu.com/s/1gexnMwj

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = +;
const int INF = 1e9+1e9; int L[],R[],q[maxn][];
int f[maxn][] , a[maxn][] , b[maxn][];
int n,m,K,lim; void push(int i,int j) {
while(L[j]<R[j] && a[i][j]<=a[q[R[j]-][j]][j]) R[j]--;
q[R[j]++][j]=i;
}
int pop(int i,int j) {
while(L[j]<R[j] && q[L[j]][j]<i-lim) L[j]++;
return a[q[L[j]][j]][j];
}
int read(int& x) {
char c=getchar(); while(!isdigit(c))c=getchar();
x=; while(isdigit(c))x=x*+c-'',c=getchar();
}
int main() {
read(n),read(m),read(K),read(lim);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) {
read(b[j][i]);
b[j][i]+=b[j-][i];
}
for(int j=;j<=m;j++) push(,j);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
f[i][j]=pop(i,j)+b[i][j];
for(int j=;j<=m;j++) { //向单调队列中添加a[i][]
a[i][j]=INF;
for(int k=;k<=m;k++) if(k!=j)
a[i][j]=min(a[i][j],f[i][k]);
a[i][j]=a[i][j]-b[i][j]+K;
push(i,j);
}
}
int ans=f[n][];
for(int i=;i<=m;i++) ans=min(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

vijos P1243 生产产品(单调队列+DP)的更多相关文章

  1. Vijos P1243 生产产品 (单调队列优化DP)

    题意: 必须严格按顺序执行M个步骤来生产一个产品,每一个步骤都可以在N台机器中的任何一台完成.机器i完成第j个步骤的时间为T[i][j].把半成品从一台机器上搬到另一台机器上也需要一定的时间K.每台机 ...

  2. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  3. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  4. zstu 4237 马里奥的求救——(单调队列DP)

    题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...

  5. 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP

    1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...

  6. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  7. codeforces 1077F2. Pictures with Kittens (hard version)单调队列+dp

    被队友催着上(xun)分(lian),div3挑战一场蓝,大号给基佬紫了,结果从D开始他开始疯狂教我做人??表演如何AKdiv3???? 比赛场上:A 2 分钟,B题蜜汁乱计数,结果想得绕进去了20多 ...

  8. 【LOJ#10180】烽火传递 单调队列+dp

    题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...

  9. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

随机推荐

  1. Length 和 Width在矩形中的定义.

    Length is the longer or longest dimension of a rectangle (or even an object). Ref:http://mathforum.o ...

  2. c#中使用数据读取器读取查询结果

    今天有时间了. 在看<c#数据库入门经典> ,总结数据读取器查询结果. 针对单个结果集使用读取器,有3中方法: String connString =..; String sql =@&q ...

  3. oracle解析xml(增加对9i版本的支持)

    --方法1  SELECT * FROM  XMLTABLE('$B/DEAL_BASIC/USER_DEAL_INFO' PASSING     XMLTYPE('<?xml version= ...

  4. java通过移位转16进制

    public class Main { public static void main(String []args) { Main main = new Main(); System.out.prin ...

  5. 330. Patching Array--Avota

    问题描述: Given a sorted positive integer array nums and an integer n, add/patch elements to the array s ...

  6. 最优雅的C++跟lua交互.

    我先来吐槽一下我们这个项目. 我是做手机游戏的, cocos2dx引擎, lua编码. 这本来是一件很欢快的事情, 因为不用接触C++. C++写久了的人写lua, 就会感觉任督二脉被打通了, 代码写 ...

  7. 『重构--改善既有代码的设计』读书笔记----Extract Class

    在面向对象中,对于类这个概念我们应该有一个清晰的责任认识,就是每个类应该只有一个变化点,每个类的变化应该只受到单一的因素,即每个类应该只有一个明确的责任.当然了,说时容易做时难,很多人可能都会和我一样 ...

  8. 《作业控制系列》-“linux命令五分钟系列”之十

    本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc 希望您能通过捐款的方式支持Linux大棚博客的运行和发展.请见“关于捐款” == ...

  9. python中xrange和range的区别

    这两个基本上都是在循环的时候用. for i in range(0, 100): print i for i in xrange(0, 100): print i 这两个输出的结果都是一样的,实际上有 ...

  10. C#遍历窗体控件(原文出自http://www.liangshunet.com/ca/201403/286434593.htm)

    一.C#遍历窗体控件 主要遍历属于窗体(Form)的控件(Controls),假如窗体中有 Panel.Button 和 TextBox 控件,遍历代码如下: /// <summary> ...