HDU4099 Revenge of Fibonacci(高精度+Trie)
Revenge of Fibonacci
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 204800/204800 K (Java/Others)
Total Submission(s): 2582 Accepted Submission(s): 647
Here we regard n as the index of the Fibonacci number F(n).
This
sequence has been studied since the publication of Fibonacci's book
Liber Abaci. So far, many properties of this sequence have been
introduced.
You had been interested in this sequence, while after
reading lots of papers about it. You think there’s no need to research
in it anymore because of the lack of its unrevealed properties.
Yesterday, you decided to study some other sequences like Lucas sequence
instead.
Fibonacci came into your dream last night. “Stupid human
beings. Lots of important properties of Fibonacci sequence have not been
studied by anyone, for example, from the Fibonacci number 347746739…”
You
woke up and couldn’t remember the whole number except the first few
digits Fibonacci told you. You decided to write a program to find this
number out in order to continue your research on Fibonacci sequence.
are multiple test cases. The first line of input contains a single
integer T denoting the number of test cases (T<=50000).
For each
test case, there is a single line containing one non-empty string made
up of at most 40 digits. And there won’t be any unnecessary leading
zeroes.
each test case, output the smallest index of the smallest Fibonacci
number whose decimal notation begins with the given digits. If no
Fibonacci number with index smaller than 100000 satisfy that condition,
output -1 instead – you think what Fibonacci wants to told you beyonds
your ability.
1
12
123
1234
12345
9
98
987
9876
98765
89
32
51075176167176176176
347746739
5610
Case #2: 25
Case #3: 226
Case #4: 1628
Case #5: 49516
Case #6: 15
Case #7: 15
Case #8: 15
Case #9: 43764
Case #10: 49750
Case #11: 10
Case #12: 51
Case #13: -1
Case #14: 1233
Case #15: 22374
【思路】
高精度加法+Trie。
离线处理出F()以内所有的F在长度40以内的前缀并构造一棵字典树。因为精度原因,保留60位进行加法计算就可以达到精确。
Trie的结点维护一个val表示经过该节点的所有字符串中的最小标号,对应每一个查询用O(maxn)的时间求解。
总的时间复杂度为O(99999*60+T*maxn)。
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int sigmasize = ;
//Trie相关
struct Node{
int val;
Node* next[sigmasize];
};
struct Trie{
Node *root;
Trie() {
root=new Node;
for(int i=;i<sigmasize;i++) root->next[i]=NULL;
root->val=;
}
int idx(char c) { return c-''; }
void insert(char* s,int v) {
int n=strlen(s);
Node* u=root;
for(int i=;i<min(n,);i++) {
int c=idx(s[i]);
if(u->next[c]==NULL) {
Node* tmp=new Node;
tmp->val=;
for(int i=;i<sigmasize;i++) tmp->next[i]=NULL;
u->next[c]=tmp;
}
u=u->next[c];
if(u->val==) u->val=v;
}
if(u->val==) u->val=v; //存储最小的F
}
int find(char* s) {
int n=strlen(s);
Node* u=root;
for(int i=;i<min(n,);i++) {
int c=idx(s[i]);
if(u->next[c]==NULL) return ;
else u=u->next[c];
}
return u->val;
}
void del(Node *root) {
for(int i=;i<sigmasize;i++) {
if(root->next[i]!=NULL) del(root->next[i]);
}
free(root);
}
}trie;
//题目相关
int n;
const int maxn = ;
char F1[maxn],F2[maxn],Ftmp[maxn],s[maxn];
char d[maxn]; void Add(char *a,char *b,char *c)
{
int i,j,k,aa,bb,t=,p=;
aa=strlen(a)-,bb=strlen(b)-;
while(aa>=||bb>=) {
if(aa<)i=; else i=a[aa]-'';
if(bb<)j=; else j=b[bb]-'';
k=i+j+t;
d[p++]=k%+'';
t=k/;
aa--,bb--;
}
while(t) {
d[p++]=t%+'';
t=t/;
}
for(i=;i<p;i++) c[i]=d[p-i-];
c[p]='\0';
} int main() {
F1[]='',F1[]='\0';
F2[]='',F2[]='\0';
trie.insert(F1,),trie.insert(F2,);
FOR(i,,-) {
strcpy(Ftmp,F2);
int len1=strlen(F1),len2=strlen(F2);
if(len1>) {
F1[]=F2[]='\0';
}
Add(F1,F2,F2);
trie.insert(F2,i+);
strcpy(F1,Ftmp);
}
int T,kase=;
scanf("%d",&T);
while(T--) {
scanf("%s",s);
int ans=trie.find(s);
if(!ans) ans=-; else ans--;
printf("Case #%d: %d\n",++kase,ans);
}
trie.del(trie.root);
return ;
}
HDU4099 Revenge of Fibonacci(高精度+Trie)的更多相关文章
- HDU 4099 Revenge of Fibonacci(高精度+字典树)
题意:对给定前缀(长度不超过40),找到一个最小的n,使得Fibonacci(n)前缀与给定前缀相同,如果在[0,99999]内找不到解,输出-1. 思路:用高精度加法计算斐波那契数列,因为给定前缀长 ...
- TZOJ 3820 Revenge of Fibonacci(大数+trie)
描述 The well-known Fibonacci sequence is defined as following: Here we regard n as the index of the F ...
- hdu4099 Revenge of Fibonacci
题意:给定fibonacci数列,输入前缀,求出下标.题目中fibonacci数量达到100000,而题目输入的前缀顶多为40位数字,这说明我们只需要精确计算fibinacci数前40位即可.查询时使 ...
- UVA - 12333 Revenge of Fibonacci 高精度加法 + 字典树
题目:给定一个长度为40的数字,问其是否在前100000项fibonacci数的前缀 因为是前缀,容易想到字典树,同时因为数字的长度只有40,所以我们只要把fib数的前40位加入字典树即可.这里主要讨 ...
- hdu4099 Revenge of Fibonacci 字典树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4099 思想很容易想到 就是预处理出前10w个的fib数,然后建树查询 建树时只用前40位即可,所以在计 ...
- HDU 4099 Revenge of Fibonacci Trie+高精度
Revenge of Fibonacci Problem Description The well-known Fibonacci sequence is defined as following: ...
- hdu 4099 Revenge of Fibonacci 大数+压位+trie
最近手感有点差,所以做点水题来锻炼一下信心. 下周的南京区域赛估计就是我的退役赛了,bless all. Revenge of Fibonacci Time Limit: 10000/5000 MS ...
- hdu 4099 Revenge of Fibonacci Trie树与模拟数位加法
Revenge of Fibonacci 题意:给定fibonacci数列的前100000项的前n位(n<=40);问你这是fibonacci数列第几项的前缀?如若不在前100000项范围内,输 ...
- UVa12333 Revenge of Fibonacci
高精度 trie 暴力预处理出前100000个fibonacci数,将每个数的前40位数字串插入到trie中,记录每个结点最早可以由哪个数字串到达. 然后依次回答询问即可. 存fibonacci数的数 ...
随机推荐
- c-八进制 转 十进制
概述 其实x进制转十进制的算法都差不多,不过如果是针对于字符形式,他们却有点不同.使用指针和数组的形式计算,又不同.这里演示将字符型的数组形式的八进制转成十进制: #include <stdio ...
- ^(bitwise exclusive Or).
一个数,进行异或同一个数两次,将得到原来的数,例如: 6 ^ 4 ^ 4 = 6; 0000-0000-0000-0110 ^ 0000-0000-0000-0100 ---------------- ...
- 关于UIScrollView属性和方法的总结
iOS中UIScollView的总结 在iOS开发中可以说UIScollView是所有滑动类视图的基础,包括UITableView,UIWebView,UICollectionView等等,UIScr ...
- Wpf自定义路由事件
创建自定义路由事件大体可以分为三个步骤: ①声明并注册路由事件. ②为路由事件添加CLR事件包装. ③创建可以激发路由事件的方法. 以ButtonBase类中代码为例展示这3个步骤: public a ...
- 安卓学习之ListView和GridView
ListView 和 GridView是安卓中显示信息的两个很基本也最常用的控件.他们的用法很相似,但是他俩也是有区别的. ListView显示的数据会将他的item放在一行显示,而且根据内容给出it ...
- imod报错:error while loading shared libraries: libjpeg.so.62的解决办法
the file libjpeg.so.62(in /usr/lib/libjpeg.so.62)belongs to the package libjpeg62so try to reinstall ...
- POJ 2391.Ombrophobic Bovines (最大流)
实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...
- php 上传视频的代码
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- Python 基础-python函数
函数 1.def 2.命名 3.函数体 4.return 返回值 def get_return(): a = 1 return a 函数参数有 形参和实参 定义几个形参就 ...
- Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三)
Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三) 本文是SolrCloud的Recovery策略系列的第三篇文章,前面两篇主要介绍了Recovery的总体流程,以及P ...