构建算法

k-d树是一个二叉树,每个节点表示一个空间范围。表1给出的是k-d树每个节点中主要包含的数据结构。
表1 k-d树中每个节点的数据类型
域名
数据类型
描述
Node-data
数据矢量
数据集中某个数据点,是n维矢量(这里也就是k维)
Range
空间矢量
该节点所代表的空间范围
split
整数
垂直于分割超平面的方向轴序号
Left
k-d树
由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
Right
k-d树
由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
parent
k-d树
父节点
从上面对k-d树节点的数据类型的描述可以看出构建k-d树是一个逐级展开的递归过程。表2给出的是构建k-d树的伪码。
表2 构建k-d树的伪码
算法:构建k-d树(createKDTree)
输入:数据点集Data-set和其所在的空间Range
输出:Kd,类型为k-d tree
1.If Data-set为空,则返回空的k-d tree
2.调用节点生成程序:
(1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;
(2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set' = Data-set\Node-data(除去其中Node-data这一点)。
3.dataleft = {d属于Data-set' && d[split] ≤ Node-data[split]}
Left_Range = {Range && dataleft} dataright = {d属于Data-set' && d[split] > Node-data[split]}
Right_Range = {Range && dataright}
4.left = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_
Range)。并设置left的parent域为Kd;
right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataright,Right_
Range)。并设置right的parent域为Kd。
以上述举的实例来看,过程如下:
由于此例简单,数据维度只有2维,所以可以简单地给x,y两个方向轴编号为0,1,也即split={0,1}。
(1)确定split域的首先该取的值。分别计算x,y方向上数据的方差得知x方向上的方差最大,所以split域值首先取0,也就是x轴方向;
(2)确定Node-data的域值。根据x轴方向的值2,5,9,4,8,7排序选出中值为7,所以Node-data = (7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于split = 0(x轴)的直线x = 7;
(3)确定左子空间和右子空间。分割超平面x = 7将整个空间分为两部分,如图2所示。x < = 7的部分为左子空间,包含3个节点{(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点{(9,6),(8,1)}。
如算法所述,k-d树的构建是一个递归的过程。然后对左子空间和右子空间内的数据重复根节点的过程就可以得到下一级子节点(5,4)和(9,6)(也就是左右子空间的'根'节点),同时将空间和数据集进一步细分。如此反复直到空间中只包含一个数据点,如图1所示。最后生成的k-d树如图3所示。

4查找算法

在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。这里先以一个简单的实例来描述最邻近查找的基本思路。
星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行'回溯'操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。此例中先从(7,2)点开始进行二叉查找,然后到达(5,4),最后到达(2,3),此时搜索路径中的节点为<(7,2),(5,4),(2,3)>,首先以(2,3)作为当前最近邻点,计算其到查询点(2.1,3.1)的距离为0.1414,然后回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点。以(2.1,3.1)为圆心,以0.1414为半径画圆,如图4所示。发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。
再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。
一个复杂点了例子如查找点为(2,4.5)。同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。以(2,4.5)为圆心,以3.041为半径作圆,如图5所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图6所示。至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。k-d树查询算法的伪代码如下所示。
  1. 从root节点开始,DFS搜索直到叶子节点,同时在stack中顺序存储已经访问的节点。
  2. 如果搜索到叶子节点,当前的叶子节点被设为最近邻节点。
  3. 然后通过stack回溯:
    如果当前点的距离比最近邻点距离近,更新最近邻节点.
    然后检查以最近距离为半径的圆是否和父节点的超平面相交.
    如果相交,则必须到父节点的另外一侧,用同样的DFS搜索法,开始检查最近邻节点。
    如果不相交,则继续往上回溯,而父节点的另一侧子节点都被淘汰,不再考虑的范围中.
  4. 当搜索回到root节点时,搜索完成,得到最近邻节点。

kd树的构建以及搜索的更多相关文章

  1. kd树的构造与搜索

    学习了两篇博客,存下来以免丢失. http://blog.csdn.net/losteng/article/details/50893739 https://leileiluoluo.com/post ...

  2. kd树 求k近邻 python 代码

      之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...

  3. 统计学习方法——KD树最近邻搜索

    李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 ...

  4. kd树和knn算法的c语言实现

    基于kd树的knn的实现原理可以参考文末的链接,都是一些好文章. 这里参考了别人的代码.用c语言写的包括kd树的构建与查找k近邻的程序. code: #include<stdio.h> # ...

  5. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  6. KD树

    k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binar ...

  7. <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...

  8. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  9. 空间划分的数据结构(网格/四叉树/八叉树/BSP树/k-d树/BVH/自定义划分)

    目录 网格 (Grid) 网格的应用 四叉树/八叉树 (Quadtree/Octree) 四叉树/八叉树的应用 BSP树 (Binary Space Partitioning Tree) 判断点在平面 ...

随机推荐

  1. 九度online judge 1543 二叉树

    题目1543:无限完全二叉树的层次遍历 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:389 解决:54 题目描述: 有一棵无限完全二叉树,他的根节点是1/1,且任意一个节点p/q的左儿 ...

  2. HDOJ 1787 GCD Again(欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. (转) Unity3D中角色的动画脚本的编写(三)

    在上一篇,我们具体的讲解了有关动画的融合,也提到了有关动画状态的权重问题.那么这次,我来以一个例子的形式来向大家讲解动画的叠加,或许会涉及到多方面的知识,我力求一次讲清.好了,我们开始吧! 首先我们必 ...

  4. 关于 Java Collections API 您不知道的 5 件事--转

    第 1 部分 http://www.ibm.com/developerworks/cn/java/j-5things2.html 对于很多 Java 开发人员来说,Java Collections A ...

  5. [转] Linux文件系统之hard link&symbol link

    这个图很清楚的表示出硬链接和软链接的方式. 1.硬链接: 基本定义:硬链接是有着相同inode号的仅文件名不同的文件(该文件名包含路径信息). 理解:如图,hard link和原始file通过同一个i ...

  6. Android Studio下打jar包

    在我们使用Eclipse时,我们常常使用的第三方类库文件大多都是jar包形式,用起来很方便.但是jar包只能打包class文件,对于Android UI类库而言,我们常常需要打包资源文件,对于界面不多 ...

  7. HDU 5033 Building(单调栈维护凸包)

    盗张图:来自http://blog.csdn.net/xuechelingxiao/article/details/39494433 题目大意:有一排建筑物坐落在一条直线上,每个建筑物都有一定的高度, ...

  8. HDU 5037 Frog(贪心)

    题意比较难懂,一只青蛙过河,它最多一次跳L米,现在河中有石头,距离不等,上帝可以往里加石头,青蛙非常聪明,它一定会选择跳的次数最少的路径.问怎么添加石头能让青蛙最多的次数.输出青蛙跳的最多的次数. 考 ...

  9. Day2 - Python基础2 列表、字典、集合

    Python之路,Day2 - Python基础2   本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一, ...

  10. dir()函数:罗列出参数所有的功能列表

    #coding=utf-8import sysprint dir(sys)#罗列出参数中所有的功能列表sys.__doc__#调用参数中的函数 #dir()函数扩展展详解python中dir()函数不 ...