kd树的构建以及搜索
构建算法
|
域名
|
数据类型
|
描述
|
|
Node-data
|
数据矢量
|
数据集中某个数据点,是n维矢量(这里也就是k维)
|
|
Range
|
空间矢量
|
该节点所代表的空间范围
|
|
split
|
整数
|
垂直于分割超平面的方向轴序号
|
|
Left
|
k-d树
|
由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
|
|
Right
|
k-d树
|
由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
|
|
parent
|
k-d树
|
父节点
|
|
算法:构建k-d树(createKDTree)
|
|
输入:数据点集Data-set和其所在的空间Range
|
|
输出:Kd,类型为k-d tree
|
|
1.If Data-set为空,则返回空的k-d tree
|
|
2.调用节点生成程序:
(1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;
(2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set' = Data-set\Node-data(除去其中Node-data这一点)。
|
|
3.dataleft = {d属于Data-set' && d[split] ≤ Node-data[split]}
Left_Range = {Range && dataleft} dataright = {d属于Data-set' && d[split] > Node-data[split]}
Right_Range = {Range && dataright}
|
|
4.left = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_
Range)。并设置left的parent域为Kd;
right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataright,Right_
Range)。并设置right的parent域为Kd。
|


4查找算法

- 从root节点开始,DFS搜索直到叶子节点,同时在stack中顺序存储已经访问的节点。
- 如果搜索到叶子节点,当前的叶子节点被设为最近邻节点。
- 然后通过stack回溯:如果当前点的距离比最近邻点距离近,更新最近邻节点.然后检查以最近距离为半径的圆是否和父节点的超平面相交.如果相交,则必须到父节点的另外一侧,用同样的DFS搜索法,开始检查最近邻节点。如果不相交,则继续往上回溯,而父节点的另一侧子节点都被淘汰,不再考虑的范围中.
- 当搜索回到root节点时,搜索完成,得到最近邻节点。
kd树的构建以及搜索的更多相关文章
- kd树的构造与搜索
学习了两篇博客,存下来以免丢失. http://blog.csdn.net/losteng/article/details/50893739 https://leileiluoluo.com/post ...
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- 统计学习方法——KD树最近邻搜索
李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 ...
- kd树和knn算法的c语言实现
基于kd树的knn的实现原理可以参考文末的链接,都是一些好文章. 这里参考了别人的代码.用c语言写的包括kd树的构建与查找k近邻的程序. code: #include<stdio.h> # ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- KD树
k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binar ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 空间划分的数据结构(网格/四叉树/八叉树/BSP树/k-d树/BVH/自定义划分)
目录 网格 (Grid) 网格的应用 四叉树/八叉树 (Quadtree/Octree) 四叉树/八叉树的应用 BSP树 (Binary Space Partitioning Tree) 判断点在平面 ...
随机推荐
- 关于lucene的IndexSearcher单实例,对于索引的实时搜索
Lucene版本:3.0 一般情况下,lucene的IndexSearcher都要写成单实例,因为每次创建IndexSearcher对象的时候,它都需要把索引文件加载进来,如果访问量比较大,而索引也比 ...
- 如何理解oracle 11g scan ip
如何理解oracle 11g scan ip 在11.2之前,client链接数据库的时候要用vip,假如你的cluster有4个节点,那么客户端的tnsnames.ora中就对应有四个主机vip ...
- 使用easy_install安装numpy、pandas、matplotlib及各种第三方模块
倒腾了一晚上最终把题目中的环境配好了.以下简要说明.留作资料.并共享. 1.安装python. 在cmd中能进入python环境,通过把python路径加入到系统路径中就可以实现. 2.安装easy- ...
- [Angualr 2] Using FormBuilder
There are two main functions we’ll use on FormBuilder: • control - creates a new Control• group - cr ...
- ThinkPHP pdo连接Oracle的配置写法,提示报错
'DB_TYPE' => 'pdo', // 数据库类型 'DB_USER' => 'user101', // username 'DB_PWD' => 'zb~!@#$%', // ...
- ld: 18 duplicate symbols for architecture i386 .linker command failed with exit code 1 (use -v to see invocation)_
昨天被linker这个错误卡了一个小时!!!各种办法都试了 是导入第三方的问题 .. 网上说 要把所有的.m文件导入 但是我下载的微博SDK根本不关事..后来 大概知道是导入了多个相同的文件... ...
- Linux禁止ping服务
ping是一个通信协议,是ip协议的一部分,tcp/ip 协议的一部分.利用它可以检查网络是否能够连通,用好它可以很好地帮助我们分析判定网络故障.应用格式为:Ping IP地址.但服务启用ping有时 ...
- 构建服务端的AMD/CMD模块加载器
本文原文地址:http://trock.lofter.com/post/117023_1208040 . 引言: 在前端开发领域,相信大家对AMD/CMD规范一定不会陌生,尤其对requireJS. ...
- C#反射—解决类的实例化问题
利用简单工厂模式来改进抽象工厂使用的复杂性(抽象工厂详见 设计模式之—抽象工厂模式) 数据表(User)业务处理接口(IUser) namespace FactoryMethodPatternDB.C ...
- 从零开始,在windows上用nodejs搭建一个静态文件服务器
从零开始,在windows上用nodejs搭建一个静态文件服务器 首先安装nodejs: 新建一个node文件夹 下载node.exe到该文件夹 下载npm然后解压到该文件夹 现在node文件夹是这样 ...