[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3
(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.
(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.
Solution.
(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.
(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- linux 终端快捷键
1. 移动光标快捷键 ctrl+f 向前移动一个字符 ctrl+b 向后移动一个字符 alt+f 向前移动一个单词 alt+b 向后移动一个单词 ctrl+a 移动到当前行首 ctrl+e 移动到当前 ...
- 【转】SQL2008清除日志
USE [master] GO ALTER DATABASE DNName SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE DNName SET ...
- 前端资源多个产品整站一键打包&包版本管理(四)—— js&css文件文件打包并生成哈希后缀,自动写入路径、解决资源缓存问题。
问题: 当我们版本更新的时候,我们都要清理缓存的js跟css,如何使得在网页中不需要手动清理呢? 答案: 生成带有哈希后缀的js跟css文件 1.文件路径 路径中的conf.js 是用于放置全局打包的 ...
- 面试题(C#算法编程题)
1>用C#写一段选择排序算法,要求用自己的编程风格.答:private int min; public void xuanZhe(int[] list)//选择排序 { ...
- php开学之环境搭建
1. php版本选择 1.1 PHP非线程安全与线程安全版本的选择技巧 1.2 版本区别 PHP的大版本主要分三支:PHP4/PHP5/PHP6 其中,PHP4由于太古老.对QQ支持不力已基本被淘汰, ...
- SET ANSI_NULLS ON
Transact-SQL 支持在与空值进行比较时,允许比较运算符返回 TRUE 或 FALSE. 通过设置 ANSI_NULLS OFF 可将此选项激活.当 ANSI_NULLS 为 OFF 时,如果 ...
- 在VS中手工创建一个最简单的WPF程序
如果不用VS的WPF项目模板,如何手工创建一个WPF程序呢?我们来模仿WPF模板,创建一个最简单的WPF程序. 第一步:文件——新建——项目——空项目,创建一个空项目. 第二步:添加引用,Presen ...
- Vijos P1061 迎春舞会之三人组舞 DP
题目链接:https://vijos.org/p/1061 n个人选出3*m人,排成m组,每组3人. 站的队形——较矮的2个人站两侧,最高的站中间. 从对称学角度来欣赏,左右两个人的身高越接近,则这一 ...
- c语言的一些基础知识
c语言作为经典语言,这里不再多说了.咱从基础一起探讨吧! 一. 定义一个整型,如果作为局部变量,没有初始化的情况下,它是一个随机的值的,一般情况下输出会是0,但这个0是作为垃圾值的;而如果作为全局变量 ...
- Word分栏
情景描述 Word分栏在小论文的撰写过程中是很常用的技术.但是,我们经常会遇到很难过的情况: 一段文字本来是连续分布的,可是当选择了分两栏 之后,开始部分在左边一栏,中间在右边一栏. ...