(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.

(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.

Solution.

(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.

(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. syntax error near unexpected token `then'

    #!/bin/bashclearfunction test{   if[$1 -eq "root"]&&[$2 -eq "123456"]    ...

  2. 鸟哥私房菜笔记:Iptables:数据包过滤软件

    数据包进入流程:规则顺序的重要性 iptables利用的是数据包过滤机制,所以它会分析数据包的包头数据.根据包头数据与定义的规则来决定该数据包是否可以进入主机或者是被丢弃.也就是说,根据数据包的分析资 ...

  3. Git问题:Cannot update paths and switch to branch 'dev' at the same time.

    使用命令 $ git checkout -b develop origin/develop 签出远程分支,出现以下错误: fatal: Cannot update paths and switch t ...

  4. MySQL基础学习之索引

    创建新表新索引 CREATE TABLE 表名(数据名 类型,INDEX  索引名称(属性)) 创建存在表的索引 CREATE INDEX 索引名称  ON 表名(属性) 修改索引 ALTER TAB ...

  5. oracle11g 表或视图连接时有可能发生的问题

    ---------背景--------- oracle11g 有2个视图,都有一个id字段,且id字段的值相同 例如:id都有 A01 ,A02 ,A03 --------问题--------- 把2 ...

  6. VC6.0生成的exe文件图标

    以下是我网上收到的方法 我都试过 成功不了 具体说下我遇到的问题 VC6.0生成的exe文件图标是用Icon下几个图标中value值最小的,顺序为IDR_MAINFRAME.IDR_ICONTETYP ...

  7. oracle忘记用户密码

    在cmd命令行下输入sqlplus / as sysdba alter user system identified by abc; 就可以将system用户的密码改成abc了. alter user ...

  8. 一步步学习NHibernate(3)——NHibernate增删改查

    请注明转载地址:http://www.cnblogs.com/arhat 在上一章中,我们配置了以下NHibernate的运行环境, 并介绍了NHibernate的中两个非常中重要的接口"I ...

  9. qt 5 小练习 创建无边框界面

    我们大家都知道QT5 自带的界面不是那么美观,并且每个软件我们都发现他们的边框是自定义的,所以我决定写一篇这样的博文,也许已经有许许多多篇大牛写的论文了,但我还是想写一篇记录自己的学习QT的历程 首先 ...

  10. CSS 居中方法集锦(*******************************)

      记录收集纯CSS层面实现的水平.垂直居中方法可用于块级.行内快.内联元素以及文字图片等. 水平或垂直居中 1.1 text-align1.2 margin1.3 line-height1.4 pa ...