(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.

(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.

Solution.

(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.

(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. php configure help

    `configure' configures this package to adapt to many kinds of systems. Usage: ./configure [OPTION].. ...

  2. apply()与call()的区别

    一直都没太明白apply()与call()的具体使用原理,今日闲来无事,决定好好研究一番. JavaScript中的每一个Function对象都有一个apply()方法和一个call()方法,它们的语 ...

  3. jquery <li>标签 隔若干行 加空白或者加虚线

    $(function () { $('ul li').addClass(function (i) { return i % 6 == 5 ? "ab" : "" ...

  4. ASP.NET MVC 搭建简单网站 --1.前端页面布局和基本样式实现

    学技术这件事儿本来就是学习现有的东西,然后变成自己的,本文当然也是借鉴的别人的东西,写出来作为一个对知识的巩固.  1.网站用的是MVC模式,新建一个MVC项目,建立一个APP1Controller, ...

  5. RAC 安装完成后 节点间通信不依赖于SSH

    RAC 安装完成后,想修改ssh 的端口.google了一下.原文https://community.oracle.com/thread/2444594?tstart=0 原文说的是11g,10g也好 ...

  6. Git常用命令汇总

    1.初始化相关 git init 初始化仓库 git remove add origin url 添加仓库地址 git remove rm origin 删除仓库地址 git clone 克隆别人的分 ...

  7. iOS新上线注意事项

    上传不出现构建版本 现在苹果要求先上传版本,然后在提交审核,但是现在经常上传完应用后,不出现构建版本,等待很久很久,也不出现,那么怎么解决,我告诉你~~尼玛的苹果是自己数据丢包了,结果就造成你不出现构 ...

  8. leetcode-110:判断平衡二叉树 Java

    Balanced Binary Tree Given a binary tree, determine if it is height-balanced. For this problem, a he ...

  9. HAProxy 的负载均衡服务器,Redis 的缓存服务器

    问答社区网络 StackExchange 由 100 多个网站构成,其中包括了 Alexa 排名第 54 的 StackOverflow.StackExchang 有 400 万用户,每月 5.6 亿 ...

  10. java多线程下载和断点续传

    java多线程下载和断点续传,示例代码只实现了多线程,断点只做了介绍.但是实际测试结果不是很理想,不知道是哪里出了问题.所以贴上来请高手修正. [Java]代码 import java.io.File ...