LintCode 83. Single Number II (Medium)

LeetCode 137. Single Number II (Medium)

以下算法的复杂度都是:

时间复杂度: O(n)

空间复杂度: O(1)

解法1. 32个计数器

最简单的思路是用32个计数器, 满3复位0.

class Solution {
public:
int singleNumberII(vector<int> &A) {
int cnt[32] = {0};
int res = 0;
for (int i = 0; i < 32; ++i) {
for (int n : A) {
cnt[i] += (n >> i) & 1;
cnt[i] %= 3;
}
res |= cnt[i] << i;
}
return res;
}
};

解法2. 找规律

我的思路是, 解法1中的计数其实只需要两个bit就够了. 所有的首个bit记做res, 所有的第二个bit记做carry, 找规律:

如果A[i]的第k位是0, 则rescarry的第k位保持原样.

如果A[i]的第k位是1, 则:

res carry res' carry'
0 0 1 0
1 0 0 1
0 1 0 0

此时(A[i][k]=1时)的规律就是:

res'[k]=~res[k] & ~carry[k]

carry'[k]=res[k] & ~carry[k]

class Solution {
public:
int singleNumberII(vector<int> &A) {
int res = 0, carry = 0;
for (int n : A) {
for (int i = 0; i < 32; ++i) {
int mask = (1 << i);
int bit = n & mask;
if (bit) {
int newRes = (~mask & res) + ((~res & mask) & (~carry & mask));
carry = (~mask & carry) + ((res & mask) & (~carry & mask));
res = newRes;
}
}
}
return res;
}
};

解法2.1. 解法2的简化

解法2中, 将A[i][k]=0=1的情况合并, 可以得到:

res'[k]=(A[i][k] & ~res[k] & ~carry[k]) | (~A[i][k] & res[k])

carry'[k]=(A[i][k] & res[k] & ~carry[k]) | (~A[i][k] & carry[k])

这样的好处是可以32位一起算, 而不用一位一位地算:

res'=(A[i] & ~res & ~carry) | (~A[i][k] & res)

carry'=(A[i] & res & ~carry) | (~A[i][k] & carry)

class Solution {
public:
int singleNumberII(vector<int> &A) {
int res = 0, carry = 0;
for (int n : A) {
int newRes = (n & (~res & ~carry)) | (~n & res);
carry = (n & (res & ~carry)) | (~n & carry);
res = newRes;
}
return res;
}
};

解法3. one, two, three

Discuss中看到的解法, 自己实在想不出来. 用one, twothree三个int值作为bit flags.

循环对A[0]A[n]进行考察, 当考察A[i]时:

S[i]={A[0],...,A[i]},

S[i]中所有数字的第k位bit的数目%3==1, 则one的第k位为1, 否则为0.

S[i]中所有数字的第k位bit的数目%3==2, 则two的第k位为1, 否则为0.

three是一个临时变量, 用于记录这一轮中, 哪些bit的数目恰巧是3的倍数.

two |= one & n;: 给two加上那些从1到2的数字.

one ^= n;: 这句比较巧妙, 既删掉了会变成2的那些1, 又加上了新的1.

three = one & two;: 1+2=3...

one&= ~three: 从1中刨去那些成为3的1.

two&= ~three: 从2中跑去那些成为3的2.

...如果你能解释得更清晰易懂, 欢迎留言!

class Solution {
public:
int singleNumberII(vector<int> &A) {
int one = 0, two = 0, three = 0;
for (int n : A) {
two |= one & n;
one ^= n;
three = one & two;
one &= ~three;
two &= ~three;
}
return one;
}
};

解法3.1. 解法3的变形

自己没想出解法4, 但是参照它的思路, 写了一个对自己比较直观的算法.

three = two & n;: 算出从2变成3的那些2.

two = (two & ~three) | (one & n);: (two & ~three)是从2中刨去那些变为3的2, (one & n)是加上那些从1变成2的1.

one = (one & ~n) | (n & ~three & ~two);: (one & ~n)是从1中刨去那些变成2的1, (n & ~three & ~two)是加上那些没给"2变3"或"1变2"用过的1.

class Solution {
public:
int singleNumberII(vector<int> &A) {
int one = 0, two = 0;
for (int n : A) {
int three = two & n;
two = (two & ~three) | (one & n);
one = (one & ~n) | (n & ~three & ~two);
}
return one;
}
};

[OJ] Single Number II的更多相关文章

  1. 【leetcode】Single Number && Single Number II(ORZ 位运算)

    题目描述: Single Number Given an array of integers, every element appears twice except for one. Find tha ...

  2. 【题解】【位操作】【Leetcode】Single Number II

    Given an array of integers, every element appears three times except for one. Find that single one. ...

  3. Single Number,Single Number II

    Single Number Total Accepted: 103745 Total Submissions: 218647 Difficulty: Medium Given an array of ...

  4. leetcode 之 Single Number II

    问题来源:Single Number II 问题描述:给定一个整数数组,除了一个整数出现一次之外,其余的每一个整数均出现三次,请找出这个出现一次的整数. 大家可能很熟悉另一个题目(Single Num ...

  5. 【leetcode78】Single Number II

    题目描述: 给定一个数组,里面除了一个数字,其他的都出现三次.求出这个数字 原文描述: Given an array of integers, every element appears three ...

  6. leetcode 136. Single Number 、 137. Single Number II 、 260. Single Number III(剑指offer40 数组中只出现一次的数字)

    136. Single Number 除了一个数字,其他数字都出现了两遍. 用亦或解决,亦或的特点:1.相同的数结果为0,不同的数结果为1 2.与自己亦或为0,与0亦或为原来的数 class Solu ...

  7. Leetcode 137 Single Number II 仅出现一次的数字

    原题地址https://leetcode.com/problems/single-number-ii/ 题目描述Given an array of integers, every element ap ...

  8. 【LeetCode】137. Single Number II (3 solutions)

    Single Number II Given an array of integers, every element appears threetimes except for one. Find t ...

  9. LeetCode 137. Single Number II(只出现一次的数字 II)

    LeetCode 137. Single Number II(只出现一次的数字 II)

随机推荐

  1. 杂技之sharpdevelop调试aps.net

    背景: 本人笔记本电脑不给力,vs打开实在太慢,因此考虑使用sharpdevelop,但sharpdevelop有点麻烦事,就是不支持asp.net的调试,为解决此问题,本人在此杂技一把了 方案一: ...

  2. tomcat maxConnections和maxThreads区别

    maxConnections:与tomcat建立的最大socket连接数,默认10000(很多网上说200,实际上通过tomcat7.0.55源码查看可以知道是10000),AbstractEndpo ...

  3. 11_Jaxws常用注解

    [不使用注解] 默认namespace是服务类包名的倒序 默认portType是服务类的类名 ............... 注解的所起的作用: Jaxws提供的注解可以对WebService的接口规 ...

  4. HDU 4768 Flyer(二分法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4768 题目大意:每组数据有n行输入,每行有三个数A.B.C,A<=B且小于2^32,从A到B每隔 ...

  5. sgu 104 Little Shop of Flowers

    经典dp问题,花店橱窗布置,不再多说,上代码 #include <cstdio> #include <cstring> #include <iostream> #i ...

  6. Huffman Coding 哈夫曼编码

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4096079.html 使用优先队列实现,需要注意以下几点: 1.在使用priority_qu ...

  7. Git问题:Cannot update paths and switch to branch 'dev' at the same time.

    使用命令 $ git checkout -b develop origin/develop 签出远程分支,出现以下错误: fatal: Cannot update paths and switch t ...

  8. SET ANSI_NULLS ON

    Transact-SQL 支持在与空值进行比较时,允许比较运算符返回 TRUE 或 FALSE. 通过设置 ANSI_NULLS OFF 可将此选项激活.当 ANSI_NULLS 为 OFF 时,如果 ...

  9. Mysql zip压缩包安装

    解压mysql.zip 配置环境变量(略) 配置my-default.ini 配置文件 安装mysql:mysqld -install 初始化mysql:mysqld --initialize 启动服 ...

  10. Oracle的rowid结构解析

    SQL> select rowid,deptno from dept; ROWID                  DEPTNO ------------------ ---------- A ...