《University Calculus》-chaper13-多重积分-二重积分的计算
之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在《概率论基础教程》中一系列的推导中发挥着很重要的作用。
回想先前关于二重积分的几何含义,求解一个曲顶圆柱的体积,我们用如下的符号进行定义:

现在我们通过另外一条路径,再次得到几何体的体积,便可以建立等式,那么对于一般的二重积分,我们就找到了计算方法。
看这样一个图:

落在x-O-y上的面积就是被积区域D,几何体的顶部z=f(x,y)就是被积函数,为了求解这个几何体的体积,我们采取先求侧面面积(平行于y-O-z面),然后对基于所求结果再对x进行积分,便得到了几何体的体积。
侧面积A(x0):

简单的一维积分求解曲边梯形。
随后基于这个侧面积的结果再对x积分,显然就得到了体积,等式如下。

那么我们就将重积分化为了累次积分,在上述形式中,最后两个等号后边的形式都表示先对y积分然后对x积分。
需要注意,按照这种极限法表示几何的体积,对它的底面是有限制的,它分为X型积分区域和Y型积分区域,例如在上面的图中,是一个X型积分区域。
Y型积分区域:

X型积分区域:

那么很显然,如果对于某个积分区域既满足X型又满足Y型,那么我们有如下的等式成立:

这个定理其实就是傅比尼定理增强形式,它是二重积分算法的基础,同时也是等价交换积分次序的基础。

这两种情况其实就是呼应着上面的X型和Y型积分区域,当某种情况既是X型积分区域又是Y型积分区域,那么便可以根据积分计算的便捷性进行积分次序的交换,而如果既不是X型也不是Y型,则考虑通过分割法将被积区域R变为X型与Y型的加和。其正确性结合上文关于二重积分几何意义的算法过程,是不言自明的。
《University Calculus》-chaper13-多重积分-二重积分的计算的更多相关文章
- 《University Calculus》-chaper13-多重积分-二重积分的引入
这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...
- 《University Calculus》-chape12-偏导数-基本概念
偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...
- 《University Calculus》-chaper13-向量场中的积分-线积分
线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形 ...
- 《University Calculus》-chaper13-多重积分-三重积分的引入
承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...
- 《University Calculus》-chape6-定积分的应用-求体积
定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...
- 《University Calculus》-chape10-向量与空间几何学-向量夹角
点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? ...
- 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式
写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...
- 《University Calculus》-chape6-定积分的应用-平面曲线长度
平面曲线的长度: 积分的重要作用体现在处理曲线和曲面. 在这里我们讨论平面中一条用参数形式表达的曲线:x=f(t),y=g(t),a≤t≤b. 如图. y=f(x)形式的弧长计算: 之前我们讨论过平面 ...
- 《University Calculus》-chape5-积分法-积分的定义
这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这 ...
随机推荐
- swift 关于闭包和函数
调用函数,有闭包参数时: 函数的实现中:闭包为参数时,有参数返回值类型: 调用闭包时,传入参数 调用函数时:闭包为参数,是闭包的实现,当闭包为最后一个参数时,可写在参数括号外面 即===>函数在 ...
- iOS8 iPad Warning: Attempt to present <UIImagePickerController:xxxx > on xxxx which is already presenting (null)
解决方法: /* I think this is because in iOS 8, alert views and action sheets are actually presented view ...
- [转]setTimeout() 函数未定义错误
用 setTimeout("showMe()",1000) 时出现 showMe is not defined 错误.这是由于showMe() 函数不在 setTimeout 调用 ...
- C# 绘制窗体客户非客户区要用WM_PAINT和WM_NCPAINT
窗体分为两部分:客户区(Client area)和非客户区(Non-Client area) WM_PAINT消息.OnPaint()方法.GetDC()API函数都是处理窗体客户区绘制的 而标题 ...
- maven项目显示红叉的解决方法
我们在做maven项目时,有时项目会显示红叉,但是项目本身并没有错误,如何去掉呢? 下面是我的解决方法 1.点击项目再右键,在搜索框中输入facets 2.把Dynamic Web Module的版本 ...
- MVVM模式应用 之加载Pivot的数据
在Pivot布局里,在进入页面时,不想页面数据全部加载,而是移动到哪个privotItem,加载那个privotItem的值. 这时我们先给pivot绑定一个command. <phone:Pi ...
- 网站开发常用jQuery插件总结(四)验证插件validation
在网站开发过程中,有时我们需要验证用户输入的信息是否符合我们的要求,所以我们会对用户提交的数据进行验证.验证分两次进行,一次是在客户端,一次是在服务端.客户端的验证可以提升用户的体验. jquery验 ...
- php脚本业务逻辑
设置时区 设置执行不超时 设置根目录常量 引入配置文件(自定义/模板) 错误记录 定义业务类 执行业务类::run() 数据库单例初始化(连接) 日志单例初始化(引入日志类,配置日志路径,日志开关) ...
- 使用PHP脚本来写Daemon程序
什么是Daemon进程 这又是一个有趣的概念,daemon在英语中是"精灵"的意思,就像我们经常在迪斯尼动画里见到的那些,有些会飞,有些不会,经常围着动画片的主人公转来转去,啰 ...
- 【Python开发实战】Windows7+VirtualBox+Ubuntu环境配置
1. VirtualBox的安装 参考常规安装方式即可. VirtualBox 4.3.14 for Windows hosts:http://download.virtualbox.org/virt ...