描述


http://poj.org/problem?id=3280

n 种小写字母构成长度为 m 的串,现在要通过增删字母使串回文,给出每种字母增和删的费用,求最小花费.

Cheapest Palindrome
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8040   Accepted: 3906

Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string

Lines 3..N+2: Each line contains three space-separated
entities: a character of the input alphabet and two integers which are
respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

Source

分析


用 dp [ i ][ j ]表示使i~j区间回文的最小画费.

1.如果 a [ i ] == a [ j ] 那么要让 i ~ j 回文只需要处理 ( i+1 ) ~ ( j-1 )即可,所以 dp [ i ][ j ] = dp [ i+1 ][ j-1 ].

2.其他情况就用如下递推关系:

dp [ i ][ j ] = min ( dp [ i+1 ][ j ] + cost [ a [ i ] ] , dp [ i ][ j-1 ] + cost [ a[ j ] ] )

如果从回文的 ( i+1 ) ~ j 而来,添加了 a [ i ] 后就不回文了, 可以再在右边加一个 a[ i ] ,或者删掉左边的 a [ i ] ,所以 cost [ a [ i ] ] 取增删中最小的即可, i ~ ( j-1 ) 同理.

 #include<cstdio>
#include<algorithm>
#define read(a) a=getnum()
using namespace std; const int maxn=,maxm=;
int n,m;
int a[maxm],cost[maxn];
int dp[maxm][maxm]; inline int getnum()
{
int ret=,k=;char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) ret=ret*+c-'';
return ret*k;
} void solve()
{
for(int i=m;i>=;i--)
{
for(int j=i;j<=m;j++)
{
if(a[i]==a[j]) dp[i][j]=dp[i+][j-];
else dp[i][j]=min(dp[i+][j]+cost[a[i]],dp[i][j-]+cost[a[j]]);
}
}
printf("%d\n",dp[][m]);
} void init()
{
read(n); read(m);
char c;
for(int i=;i<=m;i++)
{
c=getchar();
a[i]=c-'a';
}
getchar();
for(int i=;i<=n;i++)
{
int c1,c2;
c=getchar();
read(c1); read(c2);
cost[c-'a']=min(c1,c2);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("cheap.in","r",stdin);
freopen("cheap.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("cheap.out");
#endif
return ;
}

POJ_3280_Cheapest_Palindrome_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. SQL Server 表水平分区

    什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在 ...

  2. ASP.NET MVC5总结(一)@HTML和对应的HTML

    HtmlHelper用来在视图中呈现 HTML 控件,主要分为以下几类: 1.ActionLink - 链接到操作方法 @Html.ActionLink("这是一个连接", &qu ...

  3. 一个简单的定时器(NSTimer)的封装

    在项目开发中我们有的时候需要用到计时器,比如登录超时,scrollview的滚动等,那么就让我们自己手动的去创建一个类库吧. 1 首先你需要一个向外提供创建的便捷方法. 1.1 这里考虑两种情况,一种 ...

  4. Linux apt-get error

    csh@csh-laptop:~/ejabberd-15.03$ sudo apt-get install mysqlReading package lists... DoneBuilding dep ...

  5. 九度OJ 1082 代理服务器 -- 贪心算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1082 题目描述: 使用代理服务器能够在一定程度上隐藏客户端信息,从而保护用户在互联网上的隐私.我们知道n个代理服务 ...

  6. 专题二、ArrayList序列化技术细节详解

    一.绪论 所谓的JAVA序列化与反序列化,序列化就是将JAVA 对象以一种的形式保持,比如存放到硬盘,或是用于传输.反序列化是序列化的一个逆过程. JAVA规定被序列化的对象必须实现java.io.S ...

  7. 【Android】Sqlite3命令详解

    Sqlite3常用命令 Sqlite3命令有"."符合作为前缀. 基本操作 1.创建或者打开数据库 sqlite3 xxx.db 如果xxx.db存在则打开如果没有则新建此时执行创 ...

  8. MyEclipse 搭建webservice (axis1.4)

    0 引言  以前都是做javaweb的 最近因工作需要 接触了webservice 关于什么事webservice,与web的区别,soap,跟http的区别,asix1和asix2的区别,为什么不用 ...

  9. css的box-sizing:border-box有什么用

    css的box-sizing:border-box有什么用:视频说是多了的尺寸去掉了,适配box宽高

  10. echo、print、print_r、printf、sprintf、var_dump的区别比较

    一.echoecho() 实际上不是一个函数,是php语句,因此您无需对其使用括号.不过,如果您希望向 echo() 传递一个以上的参数,那么使用括号会发生解析错误.而且echo是返回void的,并不 ...