描述


http://poj.org/problem?id=3280

n 种小写字母构成长度为 m 的串,现在要通过增删字母使串回文,给出每种字母增和删的费用,求最小花费.

Cheapest Palindrome
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8040   Accepted: 3906

Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string

Lines 3..N+2: Each line contains three space-separated
entities: a character of the input alphabet and two integers which are
respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

Source

分析


用 dp [ i ][ j ]表示使i~j区间回文的最小画费.

1.如果 a [ i ] == a [ j ] 那么要让 i ~ j 回文只需要处理 ( i+1 ) ~ ( j-1 )即可,所以 dp [ i ][ j ] = dp [ i+1 ][ j-1 ].

2.其他情况就用如下递推关系:

dp [ i ][ j ] = min ( dp [ i+1 ][ j ] + cost [ a [ i ] ] , dp [ i ][ j-1 ] + cost [ a[ j ] ] )

如果从回文的 ( i+1 ) ~ j 而来,添加了 a [ i ] 后就不回文了, 可以再在右边加一个 a[ i ] ,或者删掉左边的 a [ i ] ,所以 cost [ a [ i ] ] 取增删中最小的即可, i ~ ( j-1 ) 同理.

 #include<cstdio>
#include<algorithm>
#define read(a) a=getnum()
using namespace std; const int maxn=,maxm=;
int n,m;
int a[maxm],cost[maxn];
int dp[maxm][maxm]; inline int getnum()
{
int ret=,k=;char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) ret=ret*+c-'';
return ret*k;
} void solve()
{
for(int i=m;i>=;i--)
{
for(int j=i;j<=m;j++)
{
if(a[i]==a[j]) dp[i][j]=dp[i+][j-];
else dp[i][j]=min(dp[i+][j]+cost[a[i]],dp[i][j-]+cost[a[j]]);
}
}
printf("%d\n",dp[][m]);
} void init()
{
read(n); read(m);
char c;
for(int i=;i<=m;i++)
{
c=getchar();
a[i]=c-'a';
}
getchar();
for(int i=;i<=n;i++)
{
int c1,c2;
c=getchar();
read(c1); read(c2);
cost[c-'a']=min(c1,c2);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("cheap.in","r",stdin);
freopen("cheap.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("cheap.out");
#endif
return ;
}

POJ_3280_Cheapest_Palindrome_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 响应式框架中,table表头自动换行的解决办法

    最近在用bootstrap开发网站,在处理一张table的时候发现,通过PC端查看样式正常,在手机上查看时,因为屏幕小,表格被压缩的厉害,表头和数据变形如下图 后来网上找了一下,发现一个好用的CSS属 ...

  2. WebSocket 实战

    http://www.ibm.com/developerworks/cn/java/j-lo-WebSocket/ 本文介绍了 HTML5 WebSocket 的由来,运作机制及客户端和服务端的 AP ...

  3. 学习笔记_过滤器详细_2(过滤器JavaWeb三大组件之一)

    过滤器详细 5 四种拦截方式 我们来做个测试,写一个过滤器,指定过滤的资源为b.jsp,然后我们在浏览器中直接访问b.jsp,你会发现过滤器执行了! 但是,当我们在a.jsp中request.getR ...

  4. javascript dom编程艺术笔记之图片库的改进

    dom的操作要遵守的原则 1.平稳退化 2.分离javascript 3.向后兼容 4.性能考虑 改进后的显示图片方法 function showpic(whichpic){ if(!document ...

  5. LAMP 环境 快速安装

    (一)安装Apache 1.下载安装 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yum install zlib-devel -y wget http://m ...

  6. svn 日志 offline 错误

    http://zhidao.baidu.com/question/200406861.html (转) #anon-access = read anon-access = none #把read改成n ...

  7. 网站开发常用jQuery插件总结(11)折叠插件Akordeon

    实现折叠菜单,可以完全不使用插件.如果使用jquery的话,实现起来也比较简单,我们只需要定义折叠菜单的样式,然后使用jquery中的渐隐渐现就可以了.如果我们自己写折叠菜单,可以方便的使用我们自己的 ...

  8. jQuery--Dom元素隐藏和显示原理(源码2.0.3)

    对于Dom元素显示和隐藏的操作,jQuery提供了比较方便的函数,我们也经常使用: 1. show() : 显示Dom元素2. hide() : 隐藏Dom元素3. toggle() : 改变Dom元 ...

  9. 使用win8.1 x64 office2010 php 使用 pdo_odbc 连接excel失败的问题

    public function init($filePath){ $dbq = iconv('UTF-8',"GBK",BASEPATH.'../'.$filePath); $ds ...

  10. tomcat配置虚拟目录的步骤

    1.在tomcat中.....\conf\Catalina\localhost中创建一个test.xml文件 2.然后在\conf的server.xml中的 <Host > 元素里面 添加 ...