POJ_3280_Cheapest_Palindrome_(动态规划)
描述
http://poj.org/problem?id=3280
n 种小写字母构成长度为 m 的串,现在要通过增删字母使串回文,给出每种字母增和删的费用,求最小花费.
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 8040 | Accepted: 3906 | 
Description
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").
FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
Input
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated
entities: a character of the input alphabet and two integers which are
respectively the cost of adding and deleting that character.
Output
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800
Sample Output
900
Hint
Source
分析
用 dp [ i ][ j ]表示使i~j区间回文的最小画费.
1.如果 a [ i ] == a [ j ] 那么要让 i ~ j 回文只需要处理 ( i+1 ) ~ ( j-1 )即可,所以 dp [ i ][ j ] = dp [ i+1 ][ j-1 ].
2.其他情况就用如下递推关系:
dp [ i ][ j ] = min ( dp [ i+1 ][ j ] + cost [ a [ i ] ] , dp [ i ][ j-1 ] + cost [ a[ j ] ] )
如果从回文的 ( i+1 ) ~ j 而来,添加了 a [ i ] 后就不回文了, 可以再在右边加一个 a[ i ] ,或者删掉左边的 a [ i ] ,所以 cost [ a [ i ] ] 取增删中最小的即可, i ~ ( j-1 ) 同理.
#include<cstdio>
#include<algorithm>
#define read(a) a=getnum()
using namespace std; const int maxn=,maxm=;
int n,m;
int a[maxm],cost[maxn];
int dp[maxm][maxm]; inline int getnum()
{
int ret=,k=;char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) ret=ret*+c-'';
return ret*k;
} void solve()
{
for(int i=m;i>=;i--)
{
for(int j=i;j<=m;j++)
{
if(a[i]==a[j]) dp[i][j]=dp[i+][j-];
else dp[i][j]=min(dp[i+][j]+cost[a[i]],dp[i][j-]+cost[a[j]]);
}
}
printf("%d\n",dp[][m]);
} void init()
{
read(n); read(m);
char c;
for(int i=;i<=m;i++)
{
c=getchar();
a[i]=c-'a';
}
getchar();
for(int i=;i<=n;i++)
{
int c1,c2;
c=getchar();
read(c1); read(c2);
cost[c-'a']=min(c1,c2);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("cheap.in","r",stdin);
freopen("cheap.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("cheap.out");
#endif
return ;
}
POJ_3280_Cheapest_Palindrome_(动态规划)的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
		
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
 - 简单动态规划-LeetCode198
		
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
 - 动态规划  Dynamic Programming
		
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
 - 动态规划之最长公共子序列(LCS)
		
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
 - C#动态规划查找两个字符串最大子串
		
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
 - C#递归、动态规划计算斐波那契数列
		
//递归 public static long recurFib(int num) { if (num < 2) ...
 - 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
		
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
 - 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
		
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
 - POJ 1163 The Triangle(简单动态规划)
		
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
 
随机推荐
- MVC小系列(十)【PartialView中的页面重定向】
			
在mvc的每个Action中,都可以指定一种返回页面的类型,可以是ActionResult,这表示返回的页面为View或者是一个PartialView, 在以Aspx为页面引擎时,PartialVie ...
 - Android设计模式系列
			
http://www.cnblogs.com/qianxudetianxia/category/312863.html Android设计模式系列(12)--SDK源码之生成器模式(建造者模式) 摘要 ...
 - FromHandle函数
			
一 FromHandle() MFC 实际上是对内核对象HANDLE(如CDC的m_hDC,CWnd的m_hWnd)封装了这个句柄有关的所有操作,一个类生成一个新对象的时候这个句柄是无效的,要获得这个 ...
 - ora01033 oracle正在初始化或关闭
			
toad连数据库报错: ORA-01033: ORACLE initialization or shutdown in progress 解决方法: 1)开始-运行-cmd 2)命令行中输入SQLPL ...
 - Object-C内存管理
			
Object-C的内存管理是基于引用计数的.你要做的事情只是关注你的引用,而释放内存的工作实际上由运行环境完成. 在最简单的情形中,你分配(alloc)的对象,或只是保留(retain)在一些地方的对 ...
 - iOS 指纹解锁
			
目前常用的App支持指纹解锁的还不是很多,如果在你的项目中用一下是不是显得高大上呢? 废话不说多,干货- 1.在工程中添加LocalAuthentication.framework 2.在需要验证的c ...
 - c语言数组不同初始化方式的结果
			
第一种初始化方式: #include <stdio.h> int main() { int numbers[5]={12,14}; for (int i=0; i<5; i++) { ...
 - jeesite 经常出现java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL解决思路
			
本来jeesite是用的maven,但是我开发的项目用这个框架没用maven, 经常报这个错,我能用的办法就是将springmvc—web.jar包删掉,然后重新添加
 - == 和 equals()的区别
			
package com.liaojianya.chapter1; /** * This program demonstrates the difference between == and equal ...
 - identifier not found error on function call
			
在C++工程中,自定义一个方法 void fgetsDemo(),在main 方法中调用,源代码如下: #include "stdafx.h" #include <stdio ...