所谓流水线处理,如同生产装配线一样,将操作执行工作量分成若干个时间上均衡的操作段,从流水线的起点连续地输入,流水线的各操作段以重叠方式执行。这使得操作执行速度只与流水线输入的速度有关,而与处理所需的时间无关。这样,在理想的流水操作状态下,其运行效率很高。
  如果某个设计的处理流程分为若干步骤,而且整个数据处理是单流向的,即没有反馈或者迭代运算,前一个步骤的输出是下一个步骤的输入,则可以采用流水线设计方法来提高系统的工作频率。
  下面用8位全加器作为实例,分别列举了非流水线方法、2级流水线方法和4级流水线方法。

(1)非流水线实现方式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
module adder_8bits(din_1, clk, cin, dout, din_2, cout);
    input [7:0] din_1;
    input clk;
    input cin;
    output [7:0] dout;
    input [7:0] din_2;
    output cout;
      
     reg [7:0] dout;
     reg       cout;
      
     always @(posedge clk) begin
        {cout,dout} <= din_1 + din_2 + cin;
     end
 
endmodule

(2)2级流水线实现方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
module adder_4bits_2steps(cin_a, cin_b, cin, clk, cout, sum);
    input [7:0] cin_a;
    input [7:0] cin_b;
    input cin;
    input clk;
    output cout;
    output [7:0] sum;
      
     reg cout;
     reg cout_temp;
     reg [7:0] sum;
     reg [3:0] sum_temp;
      
     always @(posedge clk) begin
        {cout_temp,sum_temp} = cin_a[3:0] + cin_b[3:0] + cin;
     end
      
     always @(posedge clk) begin
        {cout,sum} = {{1'b0,cin_a[7:4]} + {1'b0,cin_b[7:4]} + cout_temp, sum_temp};
     end
endmodule

注意:这里在always块内只能用阻塞赋值方式,否则会出现逻辑上的错误!

(3)4级流水线实现方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
module adder_8bits_4steps(cin_a, cin_b, c_in, clk, c_out, sum_out);
    input [7:0] cin_a;
    input [7:0] cin_b;
    input c_in;
    input clk;
    output c_out;
    output [7:0] sum_out;
      
     reg c_out;
     reg c_out_t1, c_out_t2, c_out_t3;
      
     reg [7:0] sum_out;
     reg [1:0] sum_out_t1;
     reg [3:0] sum_out_t2;
     reg [5:0] sum_out_t3;
      
     always @(posedge clk) begin
        {c_out_t1, sum_out_t1} = {1'b0, cin_a[1:0]} + {1'b0, cin_b[1:0]} + c_in;
     end
      
     always @(posedge clk) begin
        {c_out_t2, sum_out_t2} = {{1'b0, cin_a[3:2]} + {1'b0, cin_b[3:2]} + c_out_t1, sum_out_t1};
     end
      
     always @(posedge clk) begin
        {c_out_t3, sum_out_t3} = {{1'b0, cin_a[5:4]} + {1'b0, cin_b[5:4]} + c_out_t2, sum_out_t2};
     end
      
     always @(posedge clk) begin
        {c_out, sum_out} = {{1'b0, cin_a[7:6]} + {1'b0, cin_b[7:6]} + c_out_t3, sum_out_t3};
     end
 
 
endmodule

总结:利用流水线的设计方法,可大大提高系统的工作速度。这种方法可广泛运用于各种设计,特别是大型的、对速度要求较高的系统设计。虽然采用流水线会增大资源的使用,但是它可降低寄存器间的传播延时,保证系统维持高的系统时钟速度。在实际应用中,考虑到资源的使用和速度的要求,可以根据实际情况来选择流水线的级数以满足设计需要。
  这是一种典型的以面积换速度的设计方法。这里的“面积”主要是指设计所占用的FPGA逻辑资源数目,即利用所消耗的触发器(FF)和查找表(LUT)来衡量。“速度”是指在芯片上稳定运行时所能达到的最高频率。面积和速度这两个指标始终贯穿着FPGA的设计,是设计质量评价的最终标准。

流水线技术原理和Verilog HDL实现的更多相关文章

  1. 流水线技术原理和Verilog HDL实现(转)

    源:流水线技术原理和Verilog HDL实现 所谓流水线处理,如同生产装配线一样,将操作执行工作量分成若干个时间上均衡的操作段,从流水线的起点连续地输入,流水线的各操作段以重叠方式执行.这使得操作执 ...

  2. CRC校验原理和verilog实现方法(二)

    1 前言 在 前面的博客  CRC校验原理和verilog实现方法(一)  中,介绍了CRC校验的原理和手动计算过程.本文说一下我在学习CRC校验FPGA实现的一点心得体会. 2 线性反馈移位寄存器 ...

  3. CRC校验原理和verilog实现方法(一)

    1.CRC简介 CRC全称循环冗余校验(Cyclic Redundancy Check, CRC),是通信领域数据传输技术中常用的检错方法,用于保证数据传输的可靠性.网上有关这方面的博客和资料很多,本 ...

  4. CRC校验原理和verilog实现方法(三)

    1 代码生成 verilog实现CRC校验,可以充分发挥FPGA的硬件特性,即并行运算的能力. 具体实现方式,可以参考我上一篇博客,关键是用线性反馈移位寄存器表示出多项式,另外注意校验数据高位在先.然 ...

  5. 流水线cpu —Verilog HDL

    一.准备工作 先看看书(<计算机原理与设计 Verilog HDL版>),搞懂一点原理.然后照着书上的代码写一写(用8.4的就可以了,不用8.6的). 注意mux2x32,mux4,cla ...

  6. FPGA Verilog HDL 系列实例--------步进电机驱动控制

    [连载] FPGA Verilog HDL 系列实例 Verilog HDL 之 步进电机驱动控制 步进电机的用途还是非常广泛的,目前打印机,绘图仪,机器人等等设备都以步进电机为动力核心.那么,下面我 ...

  7. 浅谈Verilog HDL代码编写风格

    消失了好久,没有写文章,也没有做笔记,因为最近再赶一个比赛,时间很紧,昨天周六终于结束了,所以趁着周末这会儿有时间,写点东西,记录下来.首先我学习FPGA才一年多,我知道自己没有资格谈论一些比较深层次 ...

  8. Sublime Text 2 和 Verilog HDL

    Sublime Text 2 和 Verilog HDL Date  Fri 04 July 2014 Tags Sublime Text / Vivado Sublime Text 代码编辑器之于程 ...

  9. [转载]【转】乘法器的Verilog HDL实现

      乘法器如果直接用*来实现的话,会消耗很多的资源.所以有了串行和并行两种实现思路.用串行的话,8位一般会有8位以上的延迟,但是消耗的资源是最少的.低速数据处理比较适合.并行也就是流水线方法,以时间换 ...

随机推荐

  1. fdisk 添加逻辑分区

    [root@riyimei ~]# fdisk /dev/sdb WARNING: DOS-compatible mode is deprecated. It's strongly recommend ...

  2. Java基础学习总结(8)——super关键字

    一.super关键字 在JAVA类中使用super来引用父类的成分,用this来引用当前对象,如果一个类从另外一个类继承,我们new这个子类的实例对象的时候,这个子类对象里面会有一个父类对象.怎么去引 ...

  3. UVALive 6084 Happy Camper(数学题)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  4. Linux路由表的抽象扩展应用于nf_conntrack

    思想 标准IP路由查找的过程为我们提供了一个极好的"匹配-动作"的例程. 即匹配到一个路由项.然后将数据包发给该路由项指示的下一跳.假设我们把上面对IP路由查找的过程向上抽象一个层 ...

  5. SVN管理工具的使用(实习第9天)

    最后就是我进行提交代码的时候要记得写注释,自己写了那些方法要标明,或者自己修改了哪些功能也要表明.不然我会被骂的. 2>代码冲突解决的问题: 服务器上的代码跟自己代码改动的地方不同 这种情况比较 ...

  6. Python 序列化处理

    序列化 文件为dump 字符串为dumps dumps()方法返回一个str,内容就是标准的JSON loads()方法将其还原 在程序运行的过程中,所有的变量都是在内存 d = dict(name= ...

  7. Mvc前后端显示不同的404错误页

    最近做的系统前端是移动端的,后端是PC端,然后404页面不能用通一个,so  查找了一些资料,找到了一个解决办法 在Global.asax文件夹下添加Application_EndRequest事件处 ...

  8. Linux-php7安装redis

    Linux-php7安装redis 标签(空格分隔): 未分类 安装redis服务 1 下载redis cd /usr/local/ 进入安装目录 wget http://download.redis ...

  9. Laravel-路由组和中间件

    Laravel-路由组和中间件 标签(空格分隔): php 定义路由组 Route::group(['prefix'=>'Anime'], function(){ Rout::match(['g ...

  10. Ionic2中的Navigation.md

    1. 概述 为了能够得到同原生应用类似的导航效果,Ionic创建了几个navagation组件来实现pages之间的导航操作,这种导航跟原生Angular2中的route机制是不一样的,我们可以借助于 ...