BZOJ3277: 串(后缀自动机,Parent树,Dfs序)
Description
Input
Output
输出一行n个整数,第i个整数表示第i个字符串的答案。
Sample Input
abc
a
ab
Sample Output
6 1 3
解题思路:
k个嘛,好像可以离线树状数组QAQ,具体的像这样,只不过需要将所有节点都询问一遍。
最后,找子串嘛,短的不多于k个长的肯定也不行,利用这个性质,只要不够k就跳pre,直到大于等于k。
而以这个节点为后缀的子串共有len个,ans+=len就好了。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
const int N=;
struct sant{
int tranc[];
int len;
int pre;
}s[N];
struct pnt{
int hd;
int ind;
int oud;
int col;
int ans;
}p[N];
struct ent{
int twd;
int lst;
}e[N];
struct int_2{
int l;
int r;
int no;
}d[N];
int n,k;
int siz;
int dfn;
int cnt;
int fin;
char tmp[N];
int ll[N],rr[N];
int col[N];
int lst[N];
int line[N];
int str[N];
int lowbit(int x)
{
return x&(-x);
}
void update(int pos,int x)
{
while(pos&&pos<=dfn)
{
line[pos]+=x;
pos+=lowbit(pos);
}
return ;
}
int query(int pos)
{
int ans=;
while(pos)
{
ans+=line[pos];
pos-=lowbit(pos);
}
return ans;
}
bool cmp(int_2 x,int_2 y)
{
return x.r<y.r;
}
void ade(int f,int t)
{
cnt++;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
return ;
}
void Insert(int c,int pl)
{
int nwp,nwq,lsp,lsq;
nwp=++siz;
s[nwp].len=s[fin].len+;
p[nwp].col=pl;
for(lsp=fin;lsp&&!s[lsp].tranc[c];lsp=s[lsp].pre)
s[lsp].tranc[c]=nwp;
if(!lsp)
s[nwp].pre=;
else{
lsq=s[lsp].tranc[c];
if(s[lsq].len==s[lsp].len+)
s[nwp].pre=lsq;
else{
nwq=++siz;
s[nwq]=s[lsq];
s[nwq].len=s[lsp].len+;
s[lsq].pre=s[nwp].pre=nwq;
while(s[lsp].tranc[c]==lsq)
{
s[lsp].tranc[c]=nwq;
lsp=s[lsp].pre;
}
}
}
fin=nwp;
}
void Dfs(int x)
{
p[x].ind=++dfn;
col[dfn]=p[x].col;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
Dfs(to);
}
p[x].oud=++dfn;
col[dfn]=p[x].col;
}
int main()
{
scanf("%d%d",&n,&k);
if(k>n)
{
for(int i=;i<=n;i++)
printf("%d ",);
return ;
}
fin=++siz;
for(int i=;i<=n;i++)
{
ll[i]=rr[i-]+;
rr[i]=rr[i-];
fin=;
scanf("%s",tmp);
int len=strlen(tmp);
for(int j=;j<len;j++)
str[++rr[i]]=tmp[j]-'a';
for(int j=ll[i];j<=rr[i];j++)
{
Insert(str[j],i);
}
} for(int i=;i<=siz;i++)
ade(s[i].pre,i);
Dfs();
for(int i=;i<=siz;i++)
d[i]=(int_2){p[i].ind,p[i].oud,i};
std::sort(d+,d+siz+,cmp);
int r=;
for(int i=;i<=siz;i++)
{
while(r<=d[i].r)
{
if(!col[r])
{
r++;
continue;
}
if(lst[col[r]])
update(lst[col[r]],-);
update(r,);
lst[col[r]]=r;
r++;
}
r--;
p[d[i].no].ans=query(d[i].r)-query(d[i].l-);
}
for(int i=;i<=n;i++)
{
int ans=;
int root=;
for(int j=ll[i];j<=rr[i];j++)
{
root=s[root].tranc[str[j]];
while(p[root].ans<k)
root=s[root].pre;
ans+=s[root].len;
}
printf("%d ",ans);
}
puts("");
return ;
}
BZOJ3277: 串(后缀自动机,Parent树,Dfs序)的更多相关文章
- [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...
- P2336 [SCOI2012]喵星球上的点名(后缀自动机+莫队+dfs序)
P2336 [SCOI2012]喵星球上的点名 名字怎么存?显然是后缀自动机辣 询问点到多少个喵喵喵其实就是 查询后缀自动机上parent树的一个子树 于是我们考虑莫队 怎么树上莫队呢 我们用dfs序 ...
- 洛谷2414(构建ac自动机fail树dfs序后遍历Trie树维护bit及询问答案)
要点 这是一道蔡队题,看我标题行事 任意询问y串上有多少个x串,暴力找每个节点是不是结尾肯定是炸的,考虑本质:如果某节点是x的结尾,根据ac自动机的性质,x一定是此(子)串后缀.又有每个Trie节点的 ...
- BZOJ 2905: 背单词 AC自动机+fail树+dfs序+线段树
Description 给定一张包含N个单词的表,每个单词有个价值W.要求从中选出一个子序列使得其中的每个单词是后一个单词的子串,最大化子序列中W的和. Input 第一行一个整数TEST,表示数据组 ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组
E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- 【BZOJ-2434】阿狸的打字机 AC自动机 + Fail树 + DFS序 + 树状数组
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2022 Solved: 1158[Submit][Sta ...
- luogu5212/bzoj2555 substring(后缀自动机+动态树)
对字符串构建一个后缀自动机. 每次查询的就是在转移边上得到节点的parent树中后缀节点数量. 由于强制在线,可以用动态树维护后缀自动机parent树的子树和. 注意一个玄学的优化:每次在执行连边操作 ...
- 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)
题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...
- 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)
题意 题目链接 Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是\([len_{fa_{x}} + 1 ...
随机推荐
- Android中集成ffmpeg(一):编译ffmpeg
方案选择 Android中集成ffmpeg的codec功能无非两种方式: JNI直接调用,主要用于App开发(无权限修改系统底层),如EXOPlayer,JPlayer等. 集成ffmpeg到OMX, ...
- OpenCASCADE Incremental Mesh
OpenCASCADE Incremental Mesh eryar@163.com Abstract. OpenCASCADE IncrementalMesh is used to build th ...
- Azure 配置高可用的准备系列工作-建立不同区域的存储账户和建立网络!
我们谈到我们的业务,常常谈到一个词.三层架构,就是我们的UI层.数据訪问层和数据存储层的分离,通常情况下我们的业务高可用必须满足这三层的所有高可用的情况下才干达到最高级别的高可用. 那么谈到Az ...
- Linux能ping通IP,ping不通域名
今天碰到个问题, 能ping通IP地址, ping不通域名, 一直以为是 DNS解析服务器的问题, 找了半天. 问题不在这里. [root@www postfix]# cat /etc/resolv. ...
- 记录一下sql两个表关联的查询使用方法
SELECT * FROM t_yymp_user_info where user_id = (select b.user_id from t_yymp_auth_role as a,t_yymp_a ...
- python 批量下载文件
file.txt 的内容为: http://183.xxx.xxx.54:188/my/qqq.ico::qq.exe::0::http://183.xxx.xxx.54:186/my/ddnf.ic ...
- 学习《Python金融实战》中文版PDF+英文版PDF+源代码
学习python处理金融数据,建议学习<Python金融实战>,比较实用,只不过Yahoo财经的API改了,书里的方法不再有效要改一改,还有就是会有一些代码缩进小问题,总体上对金融分析很实 ...
- cogs 1456. [UVa 10881,Piotr's Ants]蚂蚁
1456. [UVa 10881,Piotr's Ants]蚂蚁 ★ 输入文件:Ants.in 输出文件:Ants.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述 ...
- 【推荐】适合本科生的网络公开课(MOOC为主),不断更新……
题记:身在海大(湛江),是幸运还是不幸,每一个人有自己的定义.人生不能再来一次,唯有把握当下.提高自己,才可能在不能拼爹的年代靠自身实力前行.或许,我们做不了富二代.但我们每一个人.都有机会成为富二代 ...
- java基本的语法
Java语言发展史 课程大纲: Java语言发展史: 1.sun公司1995年推出,2009年Oracle公司收购sun: 下载: 1.到Oracle官网下载 Java体系与特点 课程大纲: J ...