Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

1<=N,K<=10^9

1<=L<=R<=10^9

H-L<=10^5

题解:

听说这是正经的题解。。。

然而这个高端解法并没有用到题目中“H-L<=10^5”的条件,而利用这个条件,我们可以想出一个时间和代码复杂度都非常优秀的算(shui)法:(主要是因为我不会杜教筛)

先证明一个结论:选出的数的最大公约数肯定比选出的数中最大值和最小值的差小;

证明很容易,设最大公约数为$d$,最大值为$dk_1$,最小值为$dk_2$,那么$$max-min=dk_1-dk_2=d(k_1-k_2)>d$$

题目非常良心的给出$H-L\leq 10^5$,即$d<10^5$,因此就可以枚举$d$,然后容斥判重即可。

容斥:$f_i=sum-\sum\limits_{i|j}f_j$

注意$k$在区间$[L,H]$中时要判断选出的数全相同的情况!

代码实测4ms,写了杜教筛的学长跑了130多ms……

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,k,l,h,s,f[],ans=;
ll fastpow(ll x,ll y){
ll ret=;
for(;y;y>>=,x=x*x%mod){
if(y&)ret=ret*x%mod;
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld",&n,&k,&l,&h);
if(l<=k&&k<=h)ans++;
l=(l-)/k;
h/=k;
s=h-l;
for(int i=s;i>=;i--){
ll L=l/i,R=h/i,ss=R-L;
if(ss>){
f[i]=(fastpow(ss,n)-ss+mod)%mod;
for(int j=i*;j<=s;j+=i)f[i]=(f[i]-f[j]+mod)%mod;
}
}
printf("%lld",f[]+ans);
return ;
}

(noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  3. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  4. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  5. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  6. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  7. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  8. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  9. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

随机推荐

  1. Unity局部坐标系与世界坐标系的区别

    局部坐标旋转是指以父物体为参考,进行旋转. 而世界坐标系以"坐标陀螺"来进行旋转. 类似的情况例如: 东.南.西.北.是世界坐标系. 前.后.左.右是局部坐标系

  2. Model、ModelMap和ModelAndView的使用详解

    https://blog.csdn.net/itbiggod/article/details/79685610

  3. 深度学习之入门Pytorch(1)------基础

    目录: Pytorch数据类型:Tensor与Storage 创建张量 tensor与numpy数组之间的转换 索引.连接.切片等 Tensor操作[add,数学运算,转置等] GPU加速 自动求导: ...

  4. eclipse集成ijkplayer项目

    1.ijkplayer是什么 ijkplayer是b站开源的一个视频插件,基于ffmpeg, 支持 Android 和 iOS,可以代替android自带的videview,有不错的体验,支持的视频文 ...

  5. POST和GET详解

    GET和POST Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE.URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上 ...

  6. 一些BFC

    我们可能会遇到这样的一些问题,比如:子元素浮动,父元素高度塌陷:父元素跟随子元素一起移动等 这是我们可以通过触发BFC来解决这样的问题. BFC为"块级格式化上下文".它是一个独立 ...

  7. JS一个经典闭包问题

    这里是记录一些本人在学习过程中觉得重要的知识点,记录下来以供日后查看,如有不对欢迎指正,望在前端的路上共勉! <!DOCTYPE html> <html lang="en& ...

  8. nginx 过滤zip 类型的文件

    http://www.cnblogs.com/bass6/p/5500660.html

  9. 【RHEL7/CentOS7防火墙之firewall-cmd命令详解】

    目录 Firewalld zone firewall-cmd 开始配置防火墙策略 总结 Redhat Enterprise Linux7已默认使用firewalld防火墙,其管理工具是firewall ...

  10. Golang-and-package-version-managment

    参考文章 学习Golang之后对golang中的版本管理,包管理等机制一直没有很好的琢磨,偶然想起还是觉得很有必要进行归纳,包管理使用起来简单,无非就是install,uninstall,list等, ...