Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

1<=N,K<=10^9

1<=L<=R<=10^9

H-L<=10^5

题解:

听说这是正经的题解。。。

然而这个高端解法并没有用到题目中“H-L<=10^5”的条件,而利用这个条件,我们可以想出一个时间和代码复杂度都非常优秀的算(shui)法:(主要是因为我不会杜教筛)

先证明一个结论:选出的数的最大公约数肯定比选出的数中最大值和最小值的差小;

证明很容易,设最大公约数为$d$,最大值为$dk_1$,最小值为$dk_2$,那么$$max-min=dk_1-dk_2=d(k_1-k_2)>d$$

题目非常良心的给出$H-L\leq 10^5$,即$d<10^5$,因此就可以枚举$d$,然后容斥判重即可。

容斥:$f_i=sum-\sum\limits_{i|j}f_j$

注意$k$在区间$[L,H]$中时要判断选出的数全相同的情况!

代码实测4ms,写了杜教筛的学长跑了130多ms……

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,k,l,h,s,f[],ans=;
ll fastpow(ll x,ll y){
ll ret=;
for(;y;y>>=,x=x*x%mod){
if(y&)ret=ret*x%mod;
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld",&n,&k,&l,&h);
if(l<=k&&k<=h)ans++;
l=(l-)/k;
h/=k;
s=h-l;
for(int i=s;i>=;i--){
ll L=l/i,R=h/i,ss=R-L;
if(ss>){
f[i]=(fastpow(ss,n)-ss+mod)%mod;
for(int j=i*;j<=s;j+=i)f[i]=(f[i]-f[j]+mod)%mod;
}
}
printf("%lld",f[]+ans);
return ;
}

(noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  3. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  4. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  5. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  6. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  7. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  8. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  9. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

随机推荐

  1. 杭电 4508 湫湫系列故事——减肥记I【完全背包】

    解题思路:因为食物是可以随便吃的,所以是完全背包,卡路里代表消耗,幸福感代表价值,套公式就可以做了. Problem Description 对于吃货来说,过年最幸福的事就是吃了,没有之一! 但是对于 ...

  2. java的算法实现冒泡

    package xutao3;public class test1 { public static void main(String[] args) { int[] arr={12,88,66,55, ...

  3. office2016 下载直通车

    下载地址 微软官方序列号(产品激活密钥):NKGG6-WBPCC-HXWMY-6DQGJ-CPQVG. 激活工具下载 分享源地址

  4. NOIP2018提高组金牌训练营——字符串专题

    NOIP2018提高组金牌训练营——字符串专题 1154 回文串划分 有一个字符串S,求S最少可以被划分为多少个回文串. 例如:abbaabaa,有多种划分方式.   a|bb|aabaa - 3 个 ...

  5. W10如何开启LinuxBash及安装Ubuntu

    W10如何开启LinuxBash的功能 1)开启开发人员模式 2)启动部分windows功能 完成后重启系统 然后在cmd中输入bash按命令操作即可使用bash命令 3)下载安装ubuntu lxr ...

  6. 题解 P1337 【[JSOI2004]平衡点 / 吊打XXX】

    这道题调了好久,果然非洲人是得不到眷顾的吗... 本题采用模拟退火解决. 模拟退火是一种简洁明了而又高效的近似算法,基本上可以套到任何求最优解的题目上去. 它的原理是模拟物理中金属退火的现象,凭借选手 ...

  7. SpringCloud 构建微服务架构-练习

    我使用的springboot的版本为2.0.2.RELEASE,这里概念性的东西我就不粘贴复制了,百度一下 都是 一.启动Eureka注册中心服务 1.新建springboot项目,pom.xml配置 ...

  8. ASP.NET-Active Direcotry编程示例

    查找指定的AD帐号 using (DirectoryEntry de = new DirectoryEntry("LDAP://RootDSE")) { string DCName ...

  9. volatile 和 mutable 关键字

    经常接触,但是过一段时间可能又忘了.做个记录. volatile是表示变量易变,不要放缓存,每次实际取,尤其是多线程. mutable表示一个const 类或者数据结构里面,某个字段是可以改变的.

  10. HDU 4035

    dp求期望的题. 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望.E[1]即为所求. 叶子结点: E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i] ...