题目描述:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

  解题思路:

  当只有一级台阶时,f(1)=1;当有两级台阶时,f(2)=f(2-1)+f(2-2);一般情况下,当有n级台阶时,f(n)=f(n-1)+f(n-2)+···+f(n-n)=f(0)+f(1)+···+f(n-1),同理,f(n-1)=f(0)+f(1)+···+f(n-2).

  因此,根据上述规律可以得到:f(n)=2*f(n-1)。这时一个递推公式,同样为了效率问题,用循环可以实现。

  编程实现(Java):

	public int JumpFloorII(int target) {
if(target<=0)
return 0;
if(target==1)
return 1;
int res=1;
for(int i=2;i<=target;i++)
res=2*res;
return res;
}

【剑指Offer】9、变态跳台阶的更多相关文章

  1. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  2. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  3. 剑指OFFER之变态跳台阶(九度OJ1389)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...

  4. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  5. 剑指Offer 9. 变态跳台阶 (递归)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...

  6. 牛客网-《剑指offer》-变态跳台阶

    C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...

  7. 【剑指offer】变态跳台阶

    一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...

  8. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  9. [剑指Offer] 9.变态跳台阶

     题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必 ...

  10. 《剑指offer》变态跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...

随机推荐

  1. Bitnami LNMP集成包安装简单总结

    前言发送图文消息时间点,访问量大,请求并发多,业务web机处理不过来,新增加了2台web机应对.搞过Linux软件安装的都知道,各种库的依赖会把人搞崩溃,尤其是服务器不能访问外网的情况下,会非常的蛋疼 ...

  2. mybatis sql语句#{}和${}区别联系

    1.说白了就是,#{}用于引用字符变量,如varchar,string.因为sql语句执行过程中要给string varchar加‘’来执行. 2.${}用来引用int型等不需要添加单引号的值 3.具 ...

  3. OpenGL ES2.0 基本编程

    1. EGL OpenGL ES命令须要一个rendering context和一个drawing surface. Rendering Context: 保存当前的OpenGL ES状态. Draw ...

  4. c/c++ 数据结构之位图(bitmap)具体解释

    1.  概述 位图(bitmap)是一种很经常使用的结构,在索引.数据压缩等方面有广泛应用. 本文介绍了位图的实现方法及其应用场景. 2. 位图实现 2014728101320" alt=& ...

  5. jQuery Validation让验证变得如此easy(三)

    下面代码进行对jQuery Validation的简单演示包含必填项.字符长度,格式验证 一.引入文件 <script src="js/jquery-1.8.0.min.js" ...

  6. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  7. 学习XOR

    //f(x;W,c,w,b)=w*max{0, W*x+c}+b #include <iostream>#include <vector>#include <algori ...

  8. Coursera Algorithms week1 查并集 练习测验:3 Successor with delete

    题目原文: Given a set of n integers S = {0,1,…,N-1}and a sequence of requests of the following form: Rem ...

  9. kafka参数在线修改

    当kafka集群单个节点出现磁盘满了,需要清理历史topic数据:方法如下 1): 停掉kafka进程,将kafka的server.properties中的log.retention.hours=1/ ...

  10. Objective-C—— @Property详解

    实例变量:属性其实说直白点就是 ivar + setter + getter(实例变量+存取方法),不过在OC中属性多了字面量这一系列特殊关键字使得OC属性有些不同. 成员属性我们应该都使用过,比如现 ...