题意:如果v点能到的所有点反过来又能到v点,则v点是sink点,排序后输出所有的sink点。

思路:Tarjan缩点,输出所有出度为0的连通块内的点。

PS:一定要记得把数组清零!!!!!!!否则自己怎么死的都不知道。

原题请戳这里

#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dfn[5005],low[5005],p[5005],out[5005],n,m,t,cnt;
bool vis[5005];
vector<short>v[5005];
stack<short>stk;
priority_queue<int,vector<int>,greater<int> >pq;
void tarjan(int x)
{
vis[x]=1,stk.push(x),low[x]=dfn[x]=cnt++;
for(int i=0;i<v[x].size();i++)
if(!dfn[v[x][i]])
tarjan(v[x][i]),low[x]=min(low[x],low[v[x][i]]);
else if(vis[v[x][i]])
low[x]=min(low[x],dfn[v[x][i]]);
if(low[x]==dfn[x]){
int y;t++;
do y=stk.top(),stk.pop(),vis[y]=0,p[y]=t;while(y!=x);
}
}
void find(int x){for(int i=1;i<=cnt;i++)if(p[i]==x)pq.push(i);}
int main()
{
register int xx,yy;
while(scanf("%d",&n)&&n)
{
memset(out,0,sizeof(out));
memset(dfn,0,sizeof(dfn));
memset(vis,0,sizeof(vis));
memset(p,0,sizeof(p));
for(int i=1;i<=n;i++)
v[i].clear();
cnt=t=0;
scanf("%d",&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&xx,&yy),v[xx].push_back(yy);
for(int i=1;i<=n;i++)
if(!dfn[i])tarjan(i);
for(int i=1;i<=n;i++)
for(int j=0;j<v[i].size();j++)
if(p[i]!=p[v[i][j]]) out[p[i]]++;
for(int i=1;i<=t;i++)
if(out[i]==0) find(i);
while(!pq.empty())
printf("%d ",pq.top()),pq.pop();
printf("\n");
}
}

POJ 2553 Tarjan的更多相关文章

  1. POJ - 2553 tarjan算法+缩点

    题意: 给你n个点,和m条单向边,问你有多少点满足(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}关系,并把这些点输出(要注意的是这个关系中是蕴含关系而不是且(&&)关系) 题解: ...

  2. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  3. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  4. poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点

    /** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...

  5. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  6. POJ 2553 The Bottom of a Graph TarJan算法题解

    本题分两步: 1 使用Tarjan算法求全部最大子强连通图.而且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集. Tarjan算法就是模板算法了. 这里使 ...

  7. [poj 2553]The Bottom of a Graph[Tarjan强连通分量]

    题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...

  8. POJ 2553 The Bottom of a Graph 【scc tarjan】

    图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不 ...

  9. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

随机推荐

  1. js的hex转base64

    if (!window.atob) { var tableStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456 ...

  2. Centos7搭建ansible运维自动化工具

    1)设置主机名和hosts文件 2)配置阿里云repo源 Wget -O /etc/yum.repos.d/aliyun.repo https://mirrors.aliyun.com/repo/Ce ...

  3. 8.2.3 覆写 Equals

    经过对四种不同类型判等方法的讨论,我们不难发现不管是 Equals 静态方法.Equals 虚方法 抑或==操作符的执行结果,都可能受到覆写 Equals 方法的影响.因此研究对象判等就必须将注意 力 ...

  4. vim使用配置-python

    安装vundle git clone https://github.com/gmarik/Vundle.vim.git ~/.vim/bundle/Vundle.vim 添加配置文件 vim ~/.v ...

  5. [luogu4728 HNOI2009] 双递增序列 (dp)

    传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...

  6. Shell脚本备份数据库

    使用crontab 定时备份数据库 1. 编辑crontab 规则,定时执行脚本 2. 在my.cnf 文件中加 [mysqldump] user=root password=密码 3.编写shell ...

  7. Linux之强大的selinux

    简单点说,SELinux就是用来加强系统安全性的.它给一些特定程序(这些程序也在不断增加)做了一个沙箱,它将文件打上了一个安全标签,这些标签属于不同的类,也只能执行特定的操作,也就是规定了某个应用程序 ...

  8. C#学习笔记_08_面向对象

    08_面向对象 面向对象:一种看待问题解决问题的思维方式,着眼点在于找到一个能够帮助我们解决问题的实体,然后委托这个实体来帮我们解决问题:(在面向对象之前你要有一个女朋友,否则代码会经常出现bug) ...

  9. 远程连接Ubuntu的桌面

    参考:http://www.linuxidc.com/Linux/2016-06/132442.htm http://teliute.org/linux/TeUbt/lesson52/lesson52 ...

  10. Android 开发 ContentProvider 获取歌曲列表和联系人的样例

    ContentProvider(内容提供者)是Android中的四大组件之中的一个. 主要用于对外共享数据.也就是通过ContentProvider把应用中的数据共享给其它应用訪问.其它应用能够通过C ...