题面

题意:有一个凸多边形岛屿,然后告诉你从高空(x,y,h)投下炸弹,爆炸半径r,飞机水平速度和重力加速度,问岛屿被炸了多少

题解:算出来岛屿落地位置,再利用圆与凸多边形面积交

 #include<bits/stdc++.h>
#define inf 1000000000000
#define M 100009
#define eps 1e-12
#define PI acos(-1.0)
using namespace std;
struct Point
{
double x,y;
Point(){}
Point(double xx,double yy){x=xx;y=yy;}
Point operator -(Point s){return Point(x-s.x,y-s.y);}
Point operator +(Point s){return Point(x+s.x,y+s.y);}
double operator *(Point s){return x*s.x+y*s.y;}
double operator ^(Point s){return x*s.y-y*s.x;}
}p[M];
double max(double a,double b){return a>b?a:b;}
double min(double a,double b){return a<b?a:b;}
double len(Point a){return sqrt(a*a);}
double dis(Point a,Point b){return len(b-a);}//两点之间的距离
double cross(Point a,Point b,Point c)//叉乘
{
return (b-a)^(c-a);
}
double dot(Point a,Point b,Point c)//点乘
{
return (b-a)*(c-a);
}
int judge(Point a,Point b,Point c)//判断c是否在ab线段上(前提是c在直线ab上)
{
if (c.x>=min(a.x,b.x)
&&c.x<=max(a.x,b.x)
&&c.y>=min(a.y,b.y)
&&c.y<=max(a.y,b.y)) return ;
return ;
}
double area(Point b,Point c,double r)
{
Point a(0.0,0.0);
if(dis(b,c)<eps) return 0.0;
double h=fabs(cross(a,b,c))/dis(b,c);
if(dis(a,b)>r-eps&&dis(a,c)>r-eps)//两个端点都在圆的外面则分为两种情况
{
double angle=acos(dot(a,b,c)/dis(a,b)/dis(a,c));
if(h>r-eps) return 0.5*r*r*angle;else
if(dot(b,a,c)>&&dot(c,a,b)>)
{
double angle1=*acos(h/r);
return 0.5*r*r*fabs(angle-angle1)+0.5*r*r*sin(angle1);
}else return 0.5*r*r*angle;
}else
if(dis(a,b)<r+eps&&dis(a,c)<r+eps) return 0.5*fabs(cross(a,b,c));//两个端点都在圆内的情况
else//一个端点在圆上一个端点在圆内的情况
{
if(dis(a,b)>dis(a,c)) swap(b,c);//默认b在圆内
if(fabs(dis(a,b))<eps) return 0.0;//ab距离为0直接返回0
if(dot(b,a,c)<eps)
{
double angle1=acos(h/dis(a,b));
double angle2=acos(h/r)-angle1;
double angle3=acos(h/dis(a,c))-acos(h/r);
return 0.5*dis(a,b)*r*sin(angle2)+0.5*r*r*angle3;
}else
{
double angle1=acos(h/dis(a,b));
double angle2=acos(h/r);
double angle3=acos(h/dis(a,c))-angle2;
return 0.5*r*dis(a,b)*sin(angle1+angle2)+0.5*r*r*angle3;
}
}
}
int main()
{
double x,y,h,x1,y1,R;
while(scanf("%lf%lf%lf",&x,&y,&h)!=-)
{
scanf("%lf%lf%lf",&x1,&y1,&R);
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
p[n+]=p[];
double V=sqrt(**h);
double t0=V/;
double x0=x+x1*t0;
double y0=y+y1*t0;
Point O(x0,y0);
for(int i=;i<=n+;i++) p[i]=p[i]-O;
O=Point(,);
double sum=;
for(int i=;i<=n;i++)
{
int j=i+;
double s=area(p[i],p[j],R);
if(cross(O,p[i],p[j])>) sum+=s; else sum-=s;
}
printf("%.2lf\n",fabs(sum));
}
return ;
}

Hdu-2892 area 计算几何 圆与凸多边形面积交的更多相关文章

  1. Gym-100935I Farm 计算几何 圆和矩形面积交

    题面 题意:就是给你一个圆,和你一个矩形,求面积并,且 保证是一种情况:三角剖分后 一个点在圆内 两个在圆外 题解:可以直接上圆与凸多边形交的板子,也可以由这题实际情况,面积等于扇形减两个三角形 #i ...

  2. hdu 2892 area (圆与多边形交面积)

    Problem - 2892 这道题的做法是以圆心为原点,对多边形进行三角剖分.题目描述中,多边形的可能是顺时针或者是逆时针给出,不过在我的做法里,是用有向面积来计算的,和常见的多边形面积的求法类似, ...

  3. Gym - 101208J 2013 ACM-ICPC World Finals J.Pollution Solution 圆与多边形面积交

    题面 题意:给你一个半圆,和另一个多边形(可凹可凸),求面积交 题解:直接上板子,因为其实这个多边形不会穿过这个半圆,所以他和圆的交也就是和半圆的交 打的时候队友说凹的不行,不是板题,后面想想,圆与多 ...

  4. hdu 2892 Area

    http://acm.hdu.edu.cn/showproblem.php?pid=2892 解题思路: 求多边形与圆的相交的面积是多少. 以圆心为顶点,将多边形划分为n个三角形. 接下来就求出每个三 ...

  5. LA 7072 Signal Interference 计算几何 圆与多边形的交

    题意: 给出一个\(n\)个点的简单多边形,和两个点\(A, B\)还有一个常数\(k(0.2 \leq k < 0.8)\). 点\(P\)满足\(\left | PB \right | \l ...

  6. poj 3675 Telescope (圆与多边形面积交)

    3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...

  7. hdu 3264(枚举+二分+圆的公共面积)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. hdu 5120 (求两圆相交的面积

    题意:告诉你两个圆环,求圆环相交的面积. /* gyt Live up to every day */ #include<cstdio> #include<cmath> #in ...

  9. hdu-1115 计算几何 求重心 凸多边形 面积

    思想是分割成三角形,然后求三角形的重心.那么多边形重心就是若干个三角形的重心带权求中心,可以用质点质心公式. #include <cstdio> #include <iostream ...

随机推荐

  1. WEB笔记-3、盒子模型+定位+显示

      3.1 盒子模型 边距控制 margin/padding:上 右 下 左:   padding:内容和边距之间的空间 margin:”盒子“外撑开的空间,两个相邻标签外边距会出现重叠和累加的现象, ...

  2. SQL Server之十大存储过程

    下面介绍十大不同类型存储过程. 用户自定义存储过程 . 创建语法 create proc | procedure pro_name [{@参数数据类型} [=默认值] [output], {@参数数据 ...

  3. Dijkstra的双栈算术表达式求值算法 C++实现

    #include<iostream> #include<string> using namespace std; template<typename T> clas ...

  4. EF test

    LibraryEntities db = new LibraryEntities(); private void btnSelect_Click(object sender, EventArgs e) ...

  5. day35-2 类的三大特性---多态,以及菱形继承问题

    目录 菱形继承问题 经典类 新式类 菱形继承 大招 多态与多态性 多态 多态性 多态在Python中的体现 鸭子类型(重要) 结论 菱形继承问题 经典类 没有继承object类的就是经典类,只有Pyt ...

  6. java中为什么不允许类多重继承,却允许接口多重继承

    首先看下面这一段代码:(底下有热心网友更正,jdk1.8之后情况确实有点变化,等改天有空继续更) interface a{ void b();}interface a1 extends a{ void ...

  7. luoguP4719 【模板】动态 DP 线段树+树链剖分+矩阵乘法+动态DP

    题目描述 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y,表示修改点x的权值为y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,n,m分 ...

  8. Git server出现cache大回收分析

    实例 git server是一个io密集型的服务,当cache量很大的时候,cache会全部一次释放,导致那么一瞬间,IO read压力很大,因为,用户的大量请求,需要重新从磁盘读到内存,但是这个时刻 ...

  9. router-link-active 与 router-link-exact-active 区别

    我的github:swarz,欢迎给老弟我++星星 router-link-exact-active 是精确匹配规则,即只有当前点击router被匹配 router-link-active 默认是全包 ...

  10. 使用GitHub代码仓库Repositories上传自己的项目代码

    1.下载客户端github(必须下载,需要该软件所提供的Git shell输入命令来上传项目)下载地址: https://github-windows.s3.amazonaws.com/GitHubS ...