watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmlrZTBnb29k/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-family:宋体">

Language:
Default
Dining
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9631   Accepted: 4446

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink
a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 

Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers
denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 

Cow 1: no meal 

Cow 2: Food #2, Drink #2 

Cow 3: Food #1, Drink #1 

Cow 4: Food #3, Drink #3 

The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

首先s向食物连边。饮料向t连边。容量=1(每份食物仅仅有一份)

然后相应的食物向牛。再向相应的饮料连边,容量=1,表示1种取法

可是一仅仅牛仅仅能取一份,所以牛代表的点本身容量=1。故拆点。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXn (100+10)
#define MAXf (100+10)
#define MAXd (100+10)
#define MAXN (1000+10)
#define MAXM ((30300)*2+100)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Max_flow //dinic+当前弧优化
{
public:
int n,s,t;
int q[10000];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
void addedge(int u,int v,int w)
{
edge[++size]=v;
weight[size]=w;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}
bool b[MAXN];
int d[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&!b[v])
{
d[v]=d[now]+1;
b[v]=1,q[++tail]=v;
}
}
}
return b[t];
}
int iter[MAXN];
int dfs(int x,int f)
{
if (x==t) return f;
Forpiter(x)
{
int v=edge[p];
if (weight[p]&&d[x]<d[v])
{
int nowflow=dfs(v,min(weight[p],f));
if (nowflow)
{
weight[p]-=nowflow;
weight[p^1]+=nowflow;
return nowflow;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(SPFA(s,t))
{
For(i,n) iter[i]=pre[i];
int f;
while (f=dfs(s,INF))
flow+=f;
}
return flow;
}
void mem(int n,int s,int t)
{
(*this).n=n;
(*this).t=t;
(*this).s=s; size=1;
MEM(pre)
}
}S; int n,f,d;
int main()
{
// freopen("poj3281.in","r",stdin);
// freopen(".out","w",stdout);
cin>>n>>f>>d;
int s=1,t=2+2*n+f+d;
S.mem(t,1,t); For(i,f)
S.addedge2(s,1+i,1); For(i,d)
S.addedge2(1+f+2*n+i,t,1); For(i,n)
{
S.addedge2(1+f+i,1+f+n+i,1);
int fi,di,p;
scanf("%d%d",&fi,&di);
For(j,fi)
{
scanf("%d",&p);
S.addedge2(1+p,1+f+i,1);
}
For(j,di)
{
scanf("%d",&p);
S.addedge2(1+f+n+i,1+f+2*n+p,1);
} } cout<<S.max_flow(s,t)<<endl; return 0;
}

POJ 3281(Dining-网络流拆点)[Template:网络流dinic]的更多相关文章

  1. POJ - 3281 Dining(拆点+最大网络流)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18230   Accepted: 8132 Descripti ...

  2. poj 3281 Dining【拆点网络流】

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11828   Accepted: 5437 Descripti ...

  3. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  4. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  5. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  6. poj 3281 Dining(网络流+拆点)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20052   Accepted: 8915 Descripti ...

  7. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

  8. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  9. POJ 3281 Dining(网络流-拆点)

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will c ...

随机推荐

  1. 胜利大逃亡(续)(bfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=1429 #include <stdio.h> #include <queue> #incl ...

  2. [转] 理解 Dubbo SPI 扩展机制

    写在前面 最近接触了 gRPC 体会到虽然众多 RPC 框架各有各的特点但是他们提供的特性和功能有很多的相似之处 , 这就说明他们面对同样的分布式系统带来的问题.从 2016 年左右开始接触到 dub ...

  3. oracle 创建命令

    环境变量设置(在Sqlplus中执行) create or replace directory filepath as 'D:\ORACLEBACKUP'; 备份脚本:expdp system/123 ...

  4. python重定向原理及实例

    1. 前言 为了在Python编程中, 利用控制台信息, 我们需要对控制台输出进行接管(重定向).在Python中,控制台输出的接口是sys.stdout,通过分析print与sys.stdout之间 ...

  5. IDEA 使用 git (码市)

    1.下载 git,并安装(一直下一步) 2.使用IDEA,检出项目,检出方式选择:git, 3.如果项目有修改,上传修改的文件 4.下载 SourceTree(git的图形化工具),并安装(一直下一步 ...

  6. TypeError: Object function (req, res, next) { app.handle(req, res, next); } has no method 'configure'

    TypeError: Object function (req, res, next) { app.handle(req, res, next); } has no method 'configure ...

  7. 前端-git思维导图笔记

    命令汇总 git config配置本地仓库 常用git config --global user.name.git config --global user.email git config --li ...

  8. 浅谈ByteBuffer转换成byte[]时遇到的问题

    有些时候我们要把ByteBuffer转换成byte[]来使用.于是很多时候会用以下代码来转换: ByteBuffer buf; .....(一些往buffer写数据的操作) byte[] bs= ne ...

  9. Hibernate_01_初体验

    hibernate开发的基本步骤: 编写配置文档hibernate.cfg.xml: 编写实体类: 生成对应实体类的映射文件并添加到配置文档中: 调用hibernate API进行测试. Hibern ...

  10. 【sqli-labs】 less11 POST - Error Based - Single quotes- String (基于错误的POST单引号字符型注入)

    查看源码,用户名和密码通过post提交 加单引号提交 出现报错,推测对应的SQL语句 , 直接使用or构造永真登录 成功,注意此处登录的用户为表中的第一个用户 需要改变用户可以通过改变筛选条件实现 作 ...