watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmlrZTBnb29k/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-family:宋体">

Language:
Default
Dining
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9631   Accepted: 4446

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink
a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 

Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers
denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 

Cow 1: no meal 

Cow 2: Food #2, Drink #2 

Cow 3: Food #1, Drink #1 

Cow 4: Food #3, Drink #3 

The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

首先s向食物连边。饮料向t连边。容量=1(每份食物仅仅有一份)

然后相应的食物向牛。再向相应的饮料连边,容量=1,表示1种取法

可是一仅仅牛仅仅能取一份,所以牛代表的点本身容量=1。故拆点。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXn (100+10)
#define MAXf (100+10)
#define MAXd (100+10)
#define MAXN (1000+10)
#define MAXM ((30300)*2+100)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Max_flow //dinic+当前弧优化
{
public:
int n,s,t;
int q[10000];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
void addedge(int u,int v,int w)
{
edge[++size]=v;
weight[size]=w;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}
bool b[MAXN];
int d[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&!b[v])
{
d[v]=d[now]+1;
b[v]=1,q[++tail]=v;
}
}
}
return b[t];
}
int iter[MAXN];
int dfs(int x,int f)
{
if (x==t) return f;
Forpiter(x)
{
int v=edge[p];
if (weight[p]&&d[x]<d[v])
{
int nowflow=dfs(v,min(weight[p],f));
if (nowflow)
{
weight[p]-=nowflow;
weight[p^1]+=nowflow;
return nowflow;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(SPFA(s,t))
{
For(i,n) iter[i]=pre[i];
int f;
while (f=dfs(s,INF))
flow+=f;
}
return flow;
}
void mem(int n,int s,int t)
{
(*this).n=n;
(*this).t=t;
(*this).s=s; size=1;
MEM(pre)
}
}S; int n,f,d;
int main()
{
// freopen("poj3281.in","r",stdin);
// freopen(".out","w",stdout);
cin>>n>>f>>d;
int s=1,t=2+2*n+f+d;
S.mem(t,1,t); For(i,f)
S.addedge2(s,1+i,1); For(i,d)
S.addedge2(1+f+2*n+i,t,1); For(i,n)
{
S.addedge2(1+f+i,1+f+n+i,1);
int fi,di,p;
scanf("%d%d",&fi,&di);
For(j,fi)
{
scanf("%d",&p);
S.addedge2(1+p,1+f+i,1);
}
For(j,di)
{
scanf("%d",&p);
S.addedge2(1+f+n+i,1+f+2*n+p,1);
} } cout<<S.max_flow(s,t)<<endl; return 0;
}

POJ 3281(Dining-网络流拆点)[Template:网络流dinic]的更多相关文章

  1. POJ - 3281 Dining(拆点+最大网络流)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18230   Accepted: 8132 Descripti ...

  2. poj 3281 Dining【拆点网络流】

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11828   Accepted: 5437 Descripti ...

  3. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  4. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  5. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  6. poj 3281 Dining(网络流+拆点)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20052   Accepted: 8915 Descripti ...

  7. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

  8. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  9. POJ 3281 Dining(网络流-拆点)

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will c ...

随机推荐

  1. springboot配置过滤器和拦截器

    import javax.servlet.*; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.Http ...

  2. El和标准标签

    EL表达式针对于四大作用域:application,session,request,pagecontext(作用域由大倒小)${作用域获取内容的名字}是根据作用域最小的取,指定作用域${session ...

  3. K8S-删除Terminating状态的namespace

    kubernetes 删除Terminating状态的命名空间 1.检查该namespace下是否还有资源: kubectl get all --namespace=cattle-system 2.删 ...

  4. python 6:list.append(新元素)与list.insert(索引,新元素)(在列表末尾追加新元素、在索引处添加新元素)

    bicycles = ['trek', 'cannondale', 'redline', 'specialized'] print(bicycles) bicycles.append("ho ...

  5. Promise-js异步加载解决方案

    范例: var p = new Promise(function(resolve, reject){ //做一些异步操作 setTimeout(function(){ console.log('执行完 ...

  6. vs2008bin下Debug bll Release文件 obj下的Debug bll Release文件区别

    Bin目录用来存放编译的结果,bin是二进制binrary的英文缩写,因为最初C编译的程序文件都是二进制文件,它有Debug和Release两个版本,分别对应的文件夹为bin/Debug和bin/Re ...

  7. NGinx 负载均衡作用

    1.负载均衡介绍: 负载均衡是由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助.其工作模式为将外部发送来的请求均匀分配到对称结构中的 ...

  8. 初学Hibernate杂乱总结

    1.如果在"one"方中(如部门)写有Set属性,但是没有在映射文件中配置,那么,在获取指定部门下的所有员工时,不会报错,但是,Set内的元素个数为0.输出为"[]&qu ...

  9. list用法(用到了再补充)

    之前学list吧,也知道很多,但是到用的时候却无从下手,还是不熟悉的缘故,看来基础知识应该再加强,要达到信手拈来的程度才行. 先说下list的特性:有序可重复,也可以存储多个空值. 我用到的方法: L ...

  10. openstack--memecache

    一.缓存系统 静态web页面: 1.工作流程: 在静态Web程序中,客户端使用Web浏览器(IE.FireFox等)经过网络(Network)连接到服务器上,使用HTTP协议发起一个请求(Reques ...