watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmlrZTBnb29k/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" style="font-family:宋体">

Language:
Default
Dining
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9631   Accepted: 4446

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink
a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 

Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers
denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 

Cow 1: no meal 

Cow 2: Food #2, Drink #2 

Cow 3: Food #1, Drink #1 

Cow 4: Food #3, Drink #3 

The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

首先s向食物连边。饮料向t连边。容量=1(每份食物仅仅有一份)

然后相应的食物向牛。再向相应的饮料连边,容量=1,表示1种取法

可是一仅仅牛仅仅能取一份,所以牛代表的点本身容量=1。故拆点。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXn (100+10)
#define MAXf (100+10)
#define MAXd (100+10)
#define MAXN (1000+10)
#define MAXM ((30300)*2+100)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Max_flow //dinic+当前弧优化
{
public:
int n,s,t;
int q[10000];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
void addedge(int u,int v,int w)
{
edge[++size]=v;
weight[size]=w;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}
bool b[MAXN];
int d[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&!b[v])
{
d[v]=d[now]+1;
b[v]=1,q[++tail]=v;
}
}
}
return b[t];
}
int iter[MAXN];
int dfs(int x,int f)
{
if (x==t) return f;
Forpiter(x)
{
int v=edge[p];
if (weight[p]&&d[x]<d[v])
{
int nowflow=dfs(v,min(weight[p],f));
if (nowflow)
{
weight[p]-=nowflow;
weight[p^1]+=nowflow;
return nowflow;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(SPFA(s,t))
{
For(i,n) iter[i]=pre[i];
int f;
while (f=dfs(s,INF))
flow+=f;
}
return flow;
}
void mem(int n,int s,int t)
{
(*this).n=n;
(*this).t=t;
(*this).s=s; size=1;
MEM(pre)
}
}S; int n,f,d;
int main()
{
// freopen("poj3281.in","r",stdin);
// freopen(".out","w",stdout);
cin>>n>>f>>d;
int s=1,t=2+2*n+f+d;
S.mem(t,1,t); For(i,f)
S.addedge2(s,1+i,1); For(i,d)
S.addedge2(1+f+2*n+i,t,1); For(i,n)
{
S.addedge2(1+f+i,1+f+n+i,1);
int fi,di,p;
scanf("%d%d",&fi,&di);
For(j,fi)
{
scanf("%d",&p);
S.addedge2(1+p,1+f+i,1);
}
For(j,di)
{
scanf("%d",&p);
S.addedge2(1+f+n+i,1+f+2*n+p,1);
} } cout<<S.max_flow(s,t)<<endl; return 0;
}

POJ 3281(Dining-网络流拆点)[Template:网络流dinic]的更多相关文章

  1. POJ - 3281 Dining(拆点+最大网络流)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18230   Accepted: 8132 Descripti ...

  2. poj 3281 Dining【拆点网络流】

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11828   Accepted: 5437 Descripti ...

  3. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  4. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  5. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  6. poj 3281 Dining(网络流+拆点)

    Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20052   Accepted: 8915 Descripti ...

  7. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

  8. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  9. POJ 3281 Dining(网络流-拆点)

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will c ...

随机推荐

  1. HTTP权威协议笔记-10.HTTP-NG

    1.HTTP发展中存在的问题 复杂性   其连接.报文.及功能逻辑之间的混合使用相当复杂,使用容易出错 可扩展性 传统流行下来的http应用很难实现扩展性,且无法兼容 性能      高延时.低吞吐 ...

  2. javascript之模块加载方案

    前言 主要学习一下四种模块加载规范: AMD CMD CommonJS ES6 模块 历史 前端模块化开发那点历史 require.js requirejs 为全局添加了 define 函数,你只要按 ...

  3. [Apple开发者帐户帮助]六、配置应用服务(2)创建DeviceCheck私钥

    要验证与DeviceCheck服务的通信,您将使用启用了DeviceCheck的私钥. 首先创建并下载启用了DeviceCheck 的私钥.然后获取密钥标识符(kid)以创建JSON Web令牌(JW ...

  4. selenium3 + python3 - alert定位

    一.alert\confirm\prompt弹出框操作主要方法有: text:获取文本值 accept() :点击"确认" dismiss() :点击"取消"或 ...

  5. css中标签,类名,id名的命名 语义化命名

    作为前端开发人,经常头疼于雷鸣,标签,id名的命名,不知道应该基于什么原则. 原则: 2 当命名的时候,问自己,这个元素是要来做什么?(根据使用目的).ad-banner 4 避免依靠位置和视觉效果命 ...

  6. 前端性能优化---DOM操作

    小结 1缓存DOM对象 场景:缓存DOM对象的方式也经常被用在元素的查找中,查找元素应该是DOM操作中最频繁的操作了,其效率优化也是大头.在一般情况下,我们会根据需要,将一些频繁被查找的元素缓存起来, ...

  7. Java多线程-synchronized关键字

    进程:是一个正在执行中的程序.每一个进程执行都有一个执行顺序.该顺序是一个执行路径,或者叫一个控制单元. 线程:就是进程中的一个独立的控制单元.线程在控制着进程的执行. 一个进程中至少有一个线程 Ja ...

  8. Java常见错误整理(一)

    1.配置完Java环境变量之后,仍然不能使用java命令. 解决方法: 如果是Windows10系统出现此问题,是因为个别Windows10系统不识别“JAVA_HOME”环境变量,将path中所有的 ...

  9. RecyclerView 悬浮/粘性头部效果3种方式

    但是以上两种方式onDrawOver()方法实现逻辑对初次查看该段代码要花时间理解.下面代码逻辑(原理一样,同样参考大神代码)相对清晰,易理解 public class StickyDecoratio ...

  10. luogu P1856 [USACO5.5]矩形周长Picture 扫描线 + 线段树

    Code: #include<bits/stdc++.h> #define maxn 200007 #define inf 100005 using namespace std; void ...