汉诺塔(一)
时间限制:1000 ms | 内存限制:65535 KB
难度:3
描述
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

现在请你计算出起始有m个金片的汉诺塔金片全部移动到另外一个针上时需要移动的最少步数是多少?(由于结果太大,现在只要求你算出结果的十进制位最后六位)

输入
第一行是一个整数N表示测试数据的组数(0<N<20)
每组测试数据的第一行是一个整数m,表示起始时金片的个数。(0<m<1000000000)
输出
输出把金片起始针上全部移动到另外一个针上需要移动的最少步数的十进制表示的最后六位。
样例输入
2
1
1000
样例输出
1
69375

//nyoj-88-1
#include <stdio.h>
#define MOD 1000000

int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
int i,m,sum=1;
scanf("%d",&m);
for(i=1;i<=m;i++)
{
sum=sum*2%MOD;
}
printf("%d\n",(sum-1)%MOD);
}
return 0;
}
//TLE

//nyoj-88-2
#include <stdio.h>
#define MOD 1000000

int pow_mod(int m,int n)
{
long long int t;
if(n==0) return 1%MOD;
else if(n==1) return 2%MOD;
else{
t = pow_mod(m,n/2);//递归调用,采用二分递归算法,,注意这里 n/2会带来奇偶性问题
t = (t * t)%MOD;//二分,乘上另一半再求模
if(n&1) t = t*m%MOD;// n 是奇数,因为 n/2 还少乘了一次 m
return t;
}
}
int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
int m;
scanf("%d",&m);
printf("%d\n",pow_mod(2,m)-1);
}
return 0;
}
//AC
/*
求次幂的时候可以翻倍的,比如:
求2的8次方不用8次,只需要3次
2*2=2^2
2^2*2^2=2^4
2^4*2^4=2^8
所以n次幂实际上需要log2(n)+1次
//二分求模
*/

nyoj_88_汉诺塔(一)_201308201730的更多相关文章

  1. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  2. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  3. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  4. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  5. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  6. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  7. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

  8. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  9. 编程:递归编程解决汉诺塔问题(用java实现)

    Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; publ ...

随机推荐

  1. mysql_mssql_access_2017年最新手机号段归属地数据库(17年4月更新)360569记录

    mysql,mssql,access 三种格式免费分享给大家,末尾有下载地址 2017年4月最新版手机号段归属地,也叫手机归属地数据库  共360569条记录,三种格式:MYSQL,MSSQL,acc ...

  2. E20170916-hm

    sassy   adj. 无礼的; 漂亮的; <非正,美> <贬>粗鲁的; <褒>时髦的; digest vt. 消化; 整理; compressor  n. 压气 ...

  3. jdk1.8 api 下载

    链接: https://pan.baidu.com/s/1Wmf2vzXxclVcBPUfPp_g_A 提取码: dpwu 希望那些CSDN的不要借此収积分,行行好吧你,小众程序员就是为了方便 凑字数 ...

  4. 发布 Windows 服务

    1. 如何新建 Windows 服务 打开VS,“新建项目”-->“windows 桌面”-->“windows 服务”: http://www.cnblogs.com/sorex/arc ...

  5. Linux egrep命令

    Linux egrep命令用于在文件内查找指定的字符串. egrep执行效果与"grep-E"相似,使用的语法及参数可参照grep指令,与grep的不同点在于解读字符串的方法. e ...

  6. Razor的使用

    Razor可以识别尖括号,且关键词是@,默认情况下会对输出的html代码进行转义 1.C#代码 用 @ 加 中括号 包起来 @{ ; i < ; i++) { <h3>C#语句块要用 ...

  7. C#中的分层开发

    一般来说,分层主要分三层即:UI(User Interface) 界面显示层,BLL(Business Logic Layer)业务逻辑层,以及DAL(Data Access Layer)数据访问层. ...

  8. Android 升级安装APK兼容Android7.0,解决FileUriExposedException

    我们在开发app时避免不了需要添加应用内升级功能.当app启动时,如果检测到最新版本,将apk安装包从服务器下载下来,执行安装.安装apk的代码一般写法如下,网上随处可以搜到 public stati ...

  9. 02--SQLite操作一步到位

    SQLite数据库(一):基本操作 SQLite 是一个开源的嵌入式关系数据库,实现自包容.零配置.支持事务的SQL数据库引擎. 其特点是高度便携.使用方便.结构紧凑.高效.可靠. 与其他数据库管理系 ...

  10. iOS开发中如何实现同步、异步、GET、POST等请求实操演示!

    1.同步请求可以从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作, 2.异步请求不会阻塞主线程,而会建立一个新的线程来操作,用户发出异步请求后,依然 ...