汉诺塔(一)
时间限制:1000 ms | 内存限制:65535 KB
难度:3
描述
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

现在请你计算出起始有m个金片的汉诺塔金片全部移动到另外一个针上时需要移动的最少步数是多少?(由于结果太大,现在只要求你算出结果的十进制位最后六位)

输入
第一行是一个整数N表示测试数据的组数(0<N<20)
每组测试数据的第一行是一个整数m,表示起始时金片的个数。(0<m<1000000000)
输出
输出把金片起始针上全部移动到另外一个针上需要移动的最少步数的十进制表示的最后六位。
样例输入
2
1
1000
样例输出
1
69375

//nyoj-88-1
#include <stdio.h>
#define MOD 1000000

int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
int i,m,sum=1;
scanf("%d",&m);
for(i=1;i<=m;i++)
{
sum=sum*2%MOD;
}
printf("%d\n",(sum-1)%MOD);
}
return 0;
}
//TLE

//nyoj-88-2
#include <stdio.h>
#define MOD 1000000

int pow_mod(int m,int n)
{
long long int t;
if(n==0) return 1%MOD;
else if(n==1) return 2%MOD;
else{
t = pow_mod(m,n/2);//递归调用,采用二分递归算法,,注意这里 n/2会带来奇偶性问题
t = (t * t)%MOD;//二分,乘上另一半再求模
if(n&1) t = t*m%MOD;// n 是奇数,因为 n/2 还少乘了一次 m
return t;
}
}
int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
int m;
scanf("%d",&m);
printf("%d\n",pow_mod(2,m)-1);
}
return 0;
}
//AC
/*
求次幂的时候可以翻倍的,比如:
求2的8次方不用8次,只需要3次
2*2=2^2
2^2*2^2=2^4
2^4*2^4=2^8
所以n次幂实际上需要log2(n)+1次
//二分求模
*/

nyoj_88_汉诺塔(一)_201308201730的更多相关文章

  1. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  2. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  3. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  4. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  5. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  6. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  7. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

  8. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  9. 编程:递归编程解决汉诺塔问题(用java实现)

    Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; publ ...

随机推荐

  1. E20171006-hm

    trace  vt. 跟踪,追踪; 追溯,探索; 探索; 查找;          vi. 沿着一小径或道路前进; 可以追溯的;            n. 痕迹; 痕迹,踪迹; 微量,极少量; [植 ...

  2. codevs3287货车运输(最小生成树+LCA)

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description A 国有 ...

  3. [Swift通天遁地]五、高级扩展-(7)UIView(视图类型)的各种扩展方法

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  4. Akka源码分析-Remote-收消息

    上一遍博客中,我们分析了网络链接建立的过程,一旦建立就可以正常的收发消息了.发送消息的细节不再分析,因为对于本地的actor来说这个过程相对简单,它只是创立链接然后给指定的netty网路服务发送消息就 ...

  5. RHEL6.5设置行号,安装GCC

    vim ~/.vimrc    set nu    set cindent    set tabstop=4    set shiftwidth=4    syntax on 安装gcc,g++编译器 ...

  6. HttpFileCollection 类使用

    public ActionResult GetForm()        {            HttpRequest request = System.Web.HttpContext.Curre ...

  7. Kafka详解与总结(五)

    Kafka持久化 1. 概述 Kafka大量依赖文件系统去存储和缓存消息.对于硬盘有个传统的观念是硬盘总是很慢,这使很多人怀疑基于文件系统的架构能否提供优异的性能.实际上硬盘的快慢完全取决于使用它的方 ...

  8. 使用UDEV SCSI规则在Oracle Linux上配置ASM

    对于使用ASM管理的磁盘来说,需要一种能够用于一致性标识磁盘设备及其正确的所属关系和权限的手段.在Linux系统中,可以使用ASMLib来执行这项任务,但是这样做的缺点是在操作系统上增加了额外的一层, ...

  9. [转]sed常用命令总结

    转自:http://blog.chinaunix.net/uid-26963748-id-3249732.html 一.Sed简介 Sed:Stream Editor  流式编辑器 又称行编辑器,每次 ...

  10. MVC系列学习(三)-EF的延迟加载

    1.什么叫延迟加载 字面上可以理解为,一个动作本该立即执行的动作,没有立即执行 2.从代码上理解 static void Main(string[] args) { //执行该语句的时候,查看sql监 ...