洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows
题目描述
Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.
Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).
FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.
给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。
输入输出格式
输入格式:
Line 1: Two space-separated integers, N and K.
Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.
- Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)
输出格式:
- Lines 1..N: Line i should contain the value of M(i).
输入输出样例
6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
15
21
16
10
8
11
说明
There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.
Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.
思路:树形dp+容斥原理。
错因:数组开小了。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
int n,y,tot;
int val[MAXN],into[MAXN],f[MAXN][];
int to[MAXN*],net[MAXN*],head[MAXN*];
void add(int u,int v){
to[++tot]=v;net[tot]=head[u];head[u]=tot;
to[++tot]=u;net[tot]=head[v];head[v]=tot;
}
int main(){
//freopen("young.in","r",stdin);
//freopen("young.out","w",stdout);
scanf("%d%d",&n,&y);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
into[u]++;
into[v]++;
}
for(int i=;i<=n;i++) scanf("%d",&val[i]);
for(int i=;i<=n;i++) f[i][]=val[i];
for(int j=;j<=y;j++)
for(int i=;i<=n;i++){
for(int k=head[i];k;k=net[k])
f[i][j]+=f[to[k]][j-];
if(j>) f[i][j]-=(into[i]-)*f[i][j-];
else f[i][]+=f[i][];
}
for(int i=;i<=n;i++)
cout<<f[i][y]<<endl;
}
洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows的更多相关文章
- 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows
传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...
- P3047 [USACO12FEB]附近的牛Nearby Cows
https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...
- 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows
P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...
- 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)
P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...
- 【洛谷3047】[USACO12FEB]附近的牛Nearby Cows
题面 题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into acc ...
- [USACO12FEB]附近的牛Nearby Cows
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 【[USACO12FEB]附近的牛Nearby Cows】
我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...
- [luoguP3047] [USACO12FEB]附近的牛Nearby Cows(DP)
传送门 dp[i][j][0] 表示点 i 在以 i 为根的子树中范围为 j 的解 dp[i][j][1] 表示点 i 在除去 以 i 为根的子树中范围为 j 的解 状态转移就很好写了 ——代码 #i ...
随机推荐
- iOS绘图系统UIKit与Core Graphics
概述 iOS主要的绘图系统有UIKit,Core Graphics,Core Animation,Core Image,Open GL等,本片博文主要介绍UIKit与Core Graphics的绘图系 ...
- javascript操作window对象
document.defaultView或全局变量window--获取一个window对象. 1)获取窗体信息 innerHeight.innerWidth--获取窗体内容区域的高度.宽度. oute ...
- HDU 2138
这题用MILLER测试应该是不可避免的. #include <iostream> #include <cstdio> #include <stdlib.h> #in ...
- Android设计模式(三)--装饰模式
1.定义: Attach additional responsibilities to an object dynamically keeping the same interface. Decoa ...
- Line(扩展欧几里得)
题意:本题给出一个直线,推断是否有整数点在这条直线上: 分析:本题最重要的是在给出的直线是不是平行于坐标轴,即A是不是为0或B是不是为0..此外.本题另一点就是C输入之后要取其相反数,才干进行扩展欧几 ...
- python的range()函数使用方法
python的range()函数使用非常方便.它能返回一系列连续添加的整数,它的工作方式类似于分片.能够生成一个列表对象. range函数大多数时常出如今for循环中.在for循环中可做为索引使用.事 ...
- DatabaseMetaData开发实务
1.总论 在企业开发实务中,数据迁移是经常会遇到的事情,此时,需要搞清楚,源数据库与目的数据库之间表以及表内部各列之间的异同.而有些时候,我们拿到的项目文 档,未必能准确表述各个表的准确结构,即使应用 ...
- oracle 11gR2 如何修改scan vip 地址 /etc/hosts方式
这次帮客户搭建了一套oracle 11gR2 rac for aix环境,scan vip因为网络调整需要,需要更改以前设置好的scan vip,是采用/etc/hosts的方式,比如将scan vi ...
- C# Parse and TryParse 方法详解
工作中遇到的常用方法: Parse and TryParse TryParse 方法类似于 Parse 方法,不同之处在于 TryParse 方法在转换失败时不引发异常 /// <summary ...
- Android: HowTo设置app不被系统kill掉
有一种方法可以设置app永远不会被kill,AndroidManifest.xml 中添加: android:persistent="true" 适用于放在/system/app下 ...