《剑指offer》矩形覆盖
一、题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
二、输入描述
输入n
三、输出描述
输出有多少种不同的覆盖方法
四、牛客网提供的框架
class Solution {
public:
int rectCover(int number) {
}
};
五、解题思路
与前面那道动态规划题大同小异。
六、代码
class Solution {
public:
int rectCover(int number) {
if(number <= 2) return number;
int num1, num2;
num1 = 1;
num2 = 2;
for(int i = 3; i <= number; i++)
{
num2 += num1;
num1 = num2 - num1;
}
return num2;
}
};
《剑指offer》矩形覆盖的更多相关文章
- 剑指Offer 矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解法,还是斐波那契数列 AC代码: class So ...
- 剑指offer——矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析:斐波那契数列的变形 n=0,返回0 n=1,返回1 n=2,返回 ...
- 用js刷剑指offer(矩形覆盖)
题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 牛客网链接 思路 依旧是斐波那契数列 2 * n的大矩形,和n个 ...
- 剑指offer——矩阵覆盖(斐波那契变形)
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...
- 剑指offer--20.矩形覆盖
链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6来源:牛客网 @DanielLea 思路分析: ...
- 剑指Offer-10.矩形覆盖(C++/Java)
题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 实际上还是一道斐波那契数列的应用,要填2*n的大矩形, ...
- C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...
- 剑指Offer - 九度1390 - 矩形覆盖
剑指Offer - 九度1390 - 矩形覆盖2014-02-05 23:27 题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形 ...
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...
随机推荐
- Wireshark默认不抓取本地包的解决方式
事实上这个工具我已经用过非常多年了,还叫Ethereal的时候就在用. 今天因为实验须要,要抓一下在localhost间的包,结果发现获取不到.解决方法也非常easy,在cmd下输入: route a ...
- Binary Tree Inorder Traversal--leetcode
原题链接:https://oj.leetcode.com/problems/binary-tree-inorder-traversal/ 题目大意:中序遍历二叉树 解题思路:中序遍历二叉树.中序遍历二 ...
- node12---mongodb
一.传统数据库技术回顾 数据库就是存储数据的,那么存储数据就用txt就行了啊,为什么要有数据库? 理由之1: 数据库有行.列的概念,数据有关系,数据不是散的. 老牌数据库,比如MySQL.SQL Se ...
- php设计模式之责任链模式
php设计模式之责任链模式 实际问题 你的论坛有举报功能,版主能解决粗口方面的举报,警察能解决严重一点的黄赌毒方面的举报,更严重的反政府的举报就需要由国安局来完成. 职场中每个人都有直属的上级,如果到 ...
- CAS算法
/** * CAS(Compare-And-Swap)算法保证了数据的原子性 * CAS算法是硬件对于并发操作共享数据的支持 * CAS包含了3个操作数: * 内存值 V 看成两步 读取内存值为1步 ...
- 3.多线程传参,以及tuple数组
#include <Windows.h> #include <thread> #include <iostream> #include <tuple> ...
- 在MyEclipse里连接Tomcat部署到项目(maven项目和web项目都适用)
前提, Tomcat *的下载(绿色版和安装版都适用) Tomcat *的安装和运行(绿色版和安装版都适用) Tomcat的配置文件详解 在Eclipse里连接Tomcat部署到项目(maven项目和 ...
- servlet中怎么注入service
在工作中使用到spring的mvc框架,分为controller/service/dao三个层次.偶尔会用到servlet替换掉controller,这就遇到如何在servlet中使用注入到sprin ...
- github上下载开源项目
1.首先获取到设置信息 2.找到克隆的路径(本步骤不包含下载.zip的方法) 3.打开 Git Shell ->输入: cd ../../ ->输入: cd 想要安装的路径 ->输 ...
- 洛谷P1067 多项式输出(模拟)
题目描述 一元 n 次多项式可用如下的表达式表示: 其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该多项式: 1. 多项式中 ...