解题思路:给出一个临界概率,在不超过这个概率的条件下,小偷最多能够偷到多少钱。因为对于每一个银行都只有偷与不偷两种选择,所以是01背包问题。

这里有一个小的转化,即为f[v]代表包内的钱数为v的时候,小偷不被逮捕的概率,这样我们在用

for(i=1;i<=n;i++)

{

for(v=vol;v>=0;v--)

f[v]=max(f[v],f[v-c[i]]*(1-p[i]));
}

的过程中,在求出最大的不被抓的概率过程中,记录下了在此过程中的包中的钱数与此时对应的概率,这样最后只需用一个循环判断在概率大于临界值的时候跳出循环,就得到了偷到的钱数

包的容量是给出的n个银行一共的钱(即为不管给出的那个临界概率是多少,最多能偷到的钱),每一个物品的消耗是该银行存有的钱。每一个物品的价值是(1-p[i])(即在该银行不被抓的概率)

反思:可耻地看了题解,因为老是转化不过去,概率因为是浮点型的不懂怎么转化,然后包的容量是所给出的所有银行所存的钱的和,也没有想到。

Robberies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 13067    Accepted Submission(s): 4834

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
 
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints 0 < T <= 100 0.0 <= P <= 1.0 0 < N <= 100 0 < Mj <= 100 0.0 <= Pj <= 1.0 A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
 
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
#include<stdio.h>
#include<string.h>
int c[105];
double p[105] ,f[10010];
double max(double a,double b)
{
if(a>b)
return a;
else
return b;
}
int main()
{
int ncase,n,i,v,vol;
double m;
scanf("%d",&ncase);
while(ncase--)
{
vol=0;
scanf("%lf %d",&m,&n);
for(i=1;i<=n;i++)
{
scanf("%d %lf",&c[i],&p[i]);
p[i]=1-p[i];
vol+=c[i];
}
memset(f,0,sizeof(f));
f[0]=1; for(i=1;i<=n;i++)
{
for(v=vol;v>=0;v--)
{
f[v]=max(f[v],f[v-c[i]]*p[i]);
printf("f[%d]=%lf\n",v,f[v]);
}
}
for(i=vol;i>=1;i--)
{
if(f[i]>=1-m)
break;
}
printf("%d\n",i); }
}

  

 

HDU 2955 Robberies【01背包】的更多相关文章

  1. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  2. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. HDU 2955 Robberies(01背包变形)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. hdu 2955 Robberies (01背包好题)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  6. HDU 2955 Robberies --01背包变形

    这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即 ...

  7. HDU 2955 Robberies(01背包)

    Robberies Problem Description The aspiring Roy the Robber has seen a lot of American movies, and kno ...

  8. HDOJ 2955 Robberies (01背包)

    10397780 2014-03-26 00:13:51 Accepted 2955 46MS 480K 676 B C++ 泽泽 http://acm.hdu.edu.cn/showproblem. ...

  9. HDU 2955 【01背包/小数/概率DP】

    Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  10. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

随机推荐

  1. MVC 返回json数据

    使用 return Json(pageList, JsonRequestBehavior.AllowGet); 返回object 使用 return Content(JsonConvert.Seria ...

  2. Java中数组的反转

    public class ArrayDemo2 { public static void main(String[] args) { //定义一个数组存放元素 int[] arr3 = {10, 20 ...

  3. 网站出现502 bad getway

    最近项目之余,领导叫解决下系统网站经常出现502的问题,作为小头头的我,怎能不顶上. 流程开始走起,先查nginx,嗯,配置是大众的.是不是缓存溢出了呢.调节buffer的值 .貌似也没什么影响啊.5 ...

  4. OpenVAS虚拟机安装

    官方网站:http://www.openvas.org/ 参考链接:http://www.openvas.org/vm.html 下载地址:http://dl.greenbone.net/downlo ...

  5. vue 动态添加路由 require.context()

    之前的写法 'use strict' import Vue from 'vue' import MessageBroadcast from 'page/MessageBroadcast' import ...

  6. C++ constexpr类型说明符

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50864210 关键字 constexp ...

  7. mac 隐藏文件显示

    显示:defaults write com.apple.finder AppleShowAllFiles -bool true隐藏:defaults write com.apple.finder Ap ...

  8. rpc框架--grpc-java

    rpc框架--grpc-java grpc源码:https://github.com/grpc/grpc-java/releases/tag/v1.0.0 gradle下载:https://gradl ...

  9. NFS安装和配置

    ---------------------------------------------------------------------------------------------------- ...

  10. 远程视频监控之驱动篇(LED)

    转载请注明出处:http://blog.csdn.net/ruoyunliufeng/article/details/38515205 之前一直在考虑该不该写这篇,由于我之前在博客里有写过LED的驱动 ...