http://www.lydsy.com/JudgeOnline/problem.php?id=1076

有时候人蠢还真是蠢。一开始我看不懂期望啊。。白书上其实讲得很详细的,什么全概率,全期望(这个压根没说)。

还是看了论文才知道全期望这个东西。。

意思很明白,就是说Y的期望等于

所有 可能的情况的期望值乘上得到这个期望值的概率 的和。

很难懂吗。。。慢慢想。

首先你得知道期望是 之中某个事件的概率×这个事件的贡献 之和。

而且这些事件相互独立。

那么这里求全期望也就是 “这个事件的贡献” 那里发生改变,而“这个事件”的贡献 也是一个需要求的期望。

本题中,我们设f[i][j]表示第i次拿宝物时,状态为j的最大期望。

由于有物品约束,所以我们在获取上一个期望时,要判断是否满足状态j包含了现在所拿物品k所需的物品。

由于本题要求求最大期望,那么对于每个满足的上一个期望,我们可以直接加上这个期望,也可以在这个加上这个期望再加上现在拿的物品k的价值。

如果k物品不可拿,我们直接加上本状态的上一个期望。

因为所有物品的概率相同,因此全期望公式可以变形为P(X=xi) sigma_i ( E(Y | X=xi) )

所以加上之前所有期望的和后,直接乘上概率1/n

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=20, K=105;
double f[K][70000];
int g[N], w[N], b[N], n, k; int main() {
read(k); read(n);
for1(i, 1, n+1) b[i]=1<<(i-1);
for1(i, 1, n) {
read(w[i]);
for(int t=getint(); t; t=getint()) g[i]+=b[t];
}
for3(i, k, 1) {
for1(j, 0, b[n+1]-1) {
for1(l, 1, n) {
if((g[l]&j)==g[l]) //如果依赖都已经拿了
f[i][j]+=max(f[i+1][j], f[i+1][j|b[l]]+w[l]); //选择最大值(因为题目有负值)
else f[i][j]+=f[i+1][j]; //(否则直接转移)
}
f[i][j]/=(double)n;
}
}
printf("%.6f\n", f[1][0]);
return 0;
}

Description

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这 个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常 小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉 这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【样例2】 Input 6 6 12 2 3 4 5 0 15 5 0 -2
2 4 5 0 -11 2 5 0 5 0 1 2 4 5 0 Output 10.023470 【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

Source

【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)的更多相关文章

  1. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  2. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  3. SCOI2008奖励关 [状压dp]

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  4. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  5. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  6. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  7. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  8. BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]

    传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...

  9. bzoj 1076: [SCOI2008]奖励关

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

随机推荐

  1. CocoaPods 使用本地代码

    CocoaPods使用方法 http://iiiyu.com/2013/12/19/learning-ios-notes-thirty-one/ 使用本地方代码的方法如下,下面建立一个名为downlo ...

  2. SQL Server集群服务器的优缺点

    由二台或更多物理上独立的服务器共同组成的“虚拟”服务器称之为集群服务器.一项称做MicroSoft集群服务(MSCS)的微软服务可对集群服务器进行管理.一个SQL Server集群是由二台或更多运行S ...

  3. CPinyin unicode汉字查找拼音(支持多音字)

    下载代码 --------------------------------------------------------------------------------- 虽然很笨的办法,却非常有效 ...

  4. Java for LeetCode 027 Remove Element

    Given an array and a value, remove all instances of that value in place and return the new length. T ...

  5. IOS多线程(GCD)

    简介 Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式的基础上的.它首次 ...

  6. project.json

    概述 项目相关配置,由原来的cocos2d.js中转移到project.json中,该文件需要与index.html同级,一般建议放在根目录下. 字段说明 debugMode 相当于原来的COCOS2 ...

  7. byte[]和InputStream的相互转换[转载]

    1:byte[]转换为InputStream InputStream sbs = new ByteArrayInputStream(byte[] buf); 2:InputStream转换为Input ...

  8. 二、JavaScript语言--JS基础--JavaScript进阶篇--JS基础语法

    1.变量 定义:从字面上看,变量是可变的量:从编程角度讲,变量是用于存储某种/某些数值的存储器.我们可以把变量看做一个盒子,盒子用来存放物品,物品可以是衣服.玩具.水果...等. 命名:变量名字可以任 ...

  9. jdk

    mkdir java mv jdk1.7.0_71/ java/ [root@centos02 src]# java -version java version "1.7.0_71" ...

  10. .net学习笔记---IIS 处理模型及ASP.NET页面生命周期

    本文是基于IIS6的处理模型. 当一个客户端页面访问IIS试图获取一些信息的时候,发生了什么事情?一个请求在通过了HTTP管道后又发生了什么?本文主要是描述这两个过程,即IIS处理asp.net请求和 ...