转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21977330&id=3755609

在linux里,中断处理分为顶半(top half),底半(bottom half),在顶半里处理优先级比较高的事情,要求占用中断时间尽量的短,在处理完成后,就激活底半,有底半处理其余任务。底半的处理方式主要有soft_irq, tasklet, workqueue三种,他们在使用方式和适用情况上各有不同。soft_irq用在对底半执行时间要求比较紧急或者非常重要的场合,主要为一些subsystem用,一般driver基本上用不上。 tasklet和work queue在普通的driver里用的相对较多,主要区别是tasklet是在中断上下文执行,而work queue是在process上下文,因此可以执行可能sleep的操作。

request_threaded_irq()是Linux kernel 2.6.30 之后新加的irq handler API

如何确定可以用到 request_threaded_irq() ? 
Linux kernel config 需要定义CONFIG_GENERIC_HARDIQS 
kernel config 才有支援threaded irq

Moving interrupts to threads 介绍request_threaded_irq() 的由来 
    http://lwn.net/Articles/302043/ 
    从realtime tree 移植而来,为了减少kernel 因为要等待每一个硬件中断处理的时间 
    ,就另外交给kernel thread 处理中断后续工作。 
    优点: 
        1 减少 kernel 延迟时间 
        2 避免处理中断时要分辨是在硬体中断或软体中断? 
        3 更容易为kernel 中断处理除错,可能可完全取代tasklet 
    原本的中断处理分上半部(硬体中断处理,必须关闭中断无法处理新的中断)跟下半部( 
    软体中断处理),因此上半部的硬体中断处理必须尽可能简短,让系统反应速度更快。

request_threaded_irq 是在将上半部的硬件中断处理缩短为只确定硬体中断来 
    自我们要处理的装置,唤醒kernel thread 执行后续中断任务。

缺点: 
    对于非irq 中断的kernel threads ,需要在原本task_struct 新增struct 
    irqaction 多占 4/8 bytes 记忆体空间 
    linux kernel 2.6.29 之后(2.6.30)加入request_threaded_irq

跟传统top/bottom havles 的差异是threaded_irq 受Linux kernel system 
    的 process scheduling 控制,不会因为写错的bottom half 代码造成整个系统 
    延迟的问题。

也可以透过RT/non RT 跟nice 等工具调整各个thread 优先权,丢给使用率较低的 
    cpu 以及受惠于kernel 原本可以对threads 做的各种控制,包括但不限于sleep, 
    lock, allocate 新的记忆体区块。

受惠最大的是shared irq line 的多个中断处理。除了可以加速共享中断造成的延迟 
    ,threaded_irq 也可以降低在同一段程式码处理多个装置中断的复杂度。

threaded irq 在使用性上也比tasklet(接着top half 直接执行,无法sleep) 
    /workqueue(kernel context?) 等需要在top half 增加跟bottom half 连结与沟通 
    的麻烦。

int request_threaded_irq(unsigned int irqirq_handler_t handlerirq_handler_t thread_fn, unsigned long irqflags, const char *devname, void *dev_id)

IRQF_SHARED 共享中断时,dev_id不能为空,因为释放irq时要区分哪个共享中断
irq:中断号
handler:发生中断时首先要执行的硬中断处理函数,这个函数可以通过返回 IRQ_WAKE_THREADED唤醒中断线程,也可
返回IRQ_HANDLE不执行中断线程
thread_fn : 中断线程,类似于中断下半部
后三个参数与request_irq中的一致

关于IRQF_ONESHOT, 直到线程函数执行完毕才会开启该中断

IRQF_ONESHOT:Interrupt is not reenabled after the hardirq handler finished.
    Used by threaded interrupts which need to keep the irq line disabled until
the threaded handler has been run.
这里linus在邮件列表里指明IRQF_ONESHOT 的原因
Making the IRQF_ONESHOT explicit does two things:
- it makes people who read the code *aware* of things
- if/when you have irq conflicts and two drivers want to attach to
the same interrupt, at least you can see directly from the source what
flags they used (and again, not have to even *think* about it). IRQF_ONESHOT 与 IRQF_SHARED 不能同时使用
当多个设备共享中断时,由于IRQF_ONESHOT会关闭中断线程的中断,而线程一般执行时间会比较长,所以是不允许的
当hardirq函数为NULL时,必须声明IRQF_ONESHOT, 表示threadirq线程中关闭该中断,在某些情况下,这个标志会非常有用
例如:设备是低电平产生中断,而硬中断函数为NULL,如果不使用IRQF_ONESHOT,就会一直产生中断执行NULL函数,中断线程
得不到执行,声明IRQF_ONESHOT后,会执行完线程才使能该中断  

点击(此处)折叠或打开

  1. /*
  2. * gpio_irqTest.c
  3. * PB27 receive this signal as IRQ and make the LED linking on PB17 turn on or turn off
  4. *
  5. */
  6. #include <linux/types.h>
  7. #include <linux/kernel.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/cdev.h>
  12. #include <linux/ioctl.h>
  13. #include <linux/fs.h>
  14. #include <linux/gpio.h>
  15. #include <linux/delay.h>
  16. #include <linux/cdev.h>
  17. #include <linux/interrupt.h>
  18. #include <asm/io.h>
  19. #include <asm/io.h>
  20. #include <mach/gpio.h>
  21. #include <mach/hardware.h>
  22. #include <mach/board.h>
  23. #include <mach/gpio.h>
  24. #include <mach/at91_pio.h>
  25. #include <mach/at91_aic.h>
  26. #include <mach/at91_pmc.h>
  27. void led_on()
  28. {
  29. // at91_set_gpio_output(AT91_PIN_PB17,1);
  30. printk("led on\n");
  31. }
  32. void led_off()
  33. {
  34. // at91_set_gpio_output(AT91_PIN_PB17 ,0);
  35. printk("led off.\n");
  36. }
  37. struct light_dev *light_devp;
  38. int light_major = 200;
  39. struct light_dev
  40. {
  41. struct cdev cdev;
  42. unsigned char value;
  43. };
  44. static void io_init(void)
  45. {
  46. at91_set_GPIO_periph(AT91_PIN_PB27, 0);
  47. at91_set_gpio_input(AT91_PIN_PB27, 1);
  48. at91_set_deglitch(AT91_PIN_PB27, 1);
  49. }
  50. struct gpio_irq_desc
  51. {
  52. int pin;
  53. int irq;
  54. unsigned long flags;
  55. char *name;
  56. };
  57. static struct gpio_irq_desc gpio_irq={AT91_PIN_PB27, AT91_PIN_PB27,IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING|IRQF_ONESHOT,"PB27"};
  58. static irqreturn_t gpio_irqhandler(int irq, void *dev_id)
  59. {
  60. printk(KERN_INFO "In hard irq handler.\n");
  61. return IRQ_WAKE_THREAD;
  62. }
  63. static irqreturn_t gpio_threadhandler(int irq, void *dev_id)
  64. {
  65. int rst;
  66. rst = at91_get_gpio_value(gpio_irq.pin);
  67. printk(KERN_INFO "gpio stat: %d\n", rst);
  68. if(rst == 0){
  69. led_on();
  70. }else{
  71. led_off();
  72. }
  73. printk(KERN_INFO "sleep 3000ms\n");
  74. msleep(3000);
  75. printk(KERN_INFO "awake after sleep\n");
  76. return IRQ_HANDLED;
  77. }
  78. int light_open(struct inode *inode,struct file *filp)
  79. {
  80. int err;
  81. struct light_dev *dev;
  82. dev = container_of(inode->i_cdev,struct light_dev,cdev);
  83. filp->private_data = dev;
  84. printk(KERN_DEBUG "%s", __FUNCTION__);
  85. io_init();
  86. // err = request_threaded_irq(gpio_irq.irq,gpio_irqhandler,gpio_threadhandler,gpio_irq.flags,gpio_irq.name,(void*)0);
  87. err = request_threaded_irq(gpio_irq.irq,NULL,gpio_threadhandler,gpio_irq.flags,gpio_irq.name,(void*)0);
  88. if(err)
  89. {
  90. // free_irq(gpio_irq.irq,(void*)0);
  91. printk(KERN_DEBUG "request irq failed.\n");
  92. return -EBUSY;
  93. }
  94. return 0;
  95. }
  96. int light_release(struct inode *inode,struct file *filp)
  97. {
  98. free_irq(gpio_irq.irq,(void*)0);
  99. return 0;
  100. }
  101. int light_ioctl(struct inode *inode,struct file *filp,unsigned int cmd, unsigned long arg)
  102. {
  103. struct light_dev *dev = filp->private_data;
  104. switch(cmd)
  105. {
  106. case 0:
  107. at91_set_gpio_output(AT91_PIN_PB19,0);
  108. break;
  109. case 1:
  110. at91_set_gpio_output(AT91_PIN_PB19,1);
  111. led_off();
  112. break;
  113. default:
  114. return -ENOTTY;
  115. // break;
  116. }
  117. return 0;
  118. }
  119. struct file_operations light_fops =
  120. {
  121. .owner = THIS_MODULE,
  122. .open = light_open,
  123. .release = light_release,
  124. .unlocked_ioctl = light_ioctl,
  125. };
  126. static void light_setup_cdev(struct light_dev *dev,int index)
  127. {
  128. int err,devno = MKDEV(light_major,index);
  129. cdev_init(&dev->cdev,&light_fops);
  130. dev->cdev.owner = THIS_MODULE;
  131. dev->cdev.ops = &light_fops;
  132. err = cdev_add(&dev->cdev,devno,1);
  133. if(err)
  134. {
  135. printk(KERN_NOTICE "Error %d adding LED%d",err,index);
  136. }
  137. }
  138. int __init light_init(void)
  139. {
  140. int result;
  141. dev_t dev = MKDEV(light_major,0);
  142. if(light_major)
  143. {
  144. result = register_chrdev_region(dev,1,"gpio");
  145. }
  146. if(result < 0)
  147. {
  148. printk(KERN_DEBUG "%s: register char dev failed.\n", __FUNCTION__);
  149. return result;
  150. }
  151. light_devp = kmalloc(sizeof(struct light_dev),GFP_KERNEL);
  152. if(!light_devp)
  153. {
  154. result = - ENOMEM;
  155. goto fail_malloc;
  156. }
  157. memset(light_devp,0,sizeof(struct light_dev));
  158. light_setup_cdev(light_devp,0);
  159. printk(KERN_DEBUG "%s done\n", __FUNCTION__);
  160. return 0;
  161. fail_malloc:unregister_chrdev_region(dev,light_devp);
  162. return result;
  163. }
  164. void __exit light_cleanup(void)
  165. {
  166. cdev_del(&light_devp->cdev);
  167. kfree(light_devp);
  168. unregister_chrdev_region(MKDEV(light_major,0),1);
  169. }
  170. module_init(light_init);
  171. module_exit(light_cleanup);
  172. MODULE_AUTHOR("Enzo Fang");
  173. MODULE_LICENSE("Dual BSD/GPL");

结论:
使用
request_threaded_irq(gpio_irq.irq,gpio_irqhandler,gpio_threadhandler,gpio_irq.flags,gpio_irq.name,(void*)0);
hardirq和thread_fn同时出现时,处理thread_fn时该中断是打开的

err = request_threaded_irq(gpio_irq.irq,NULL,gpio_threadhandler,gpio_irq.flags,gpio_irq.name,(void*)0);
但hardirq和thread_fn只有一个存在时,处理thread_fn时,中断是关闭的

linux中断申请之request_threaded_irq的更多相关文章

  1. linux中断申请之request_threaded_irq【转】

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21977330&id=3755609 在linux里,中断处理分 ...

  2. linux中断申请之request_threaded_irq 【转】

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21977330&id=3755609 在linux里,中断处理分 ...

  3. Linux中断管理 (1)Linux中断管理机制

    目录: <Linux中断管理> <Linux中断管理 (1)Linux中断管理机制> <Linux中断管理 (2)软中断和tasklet> <Linux中断管 ...

  4. Linux中断(interrupt)子系统之四:驱动程序接口层 & 中断通用逻辑层【转】

    转自:http://blog.csdn.net/droidphone/article/details/7497787 在本系列文章的第一篇:Linux中断(interrupt)子系统之一:中断系统基本 ...

  5. Linux中断(interrupt)子系统之一:中断系统基本原理【转】

    转自:http://blog.csdn.net/droidphone/article/details/7445825 这个中断系列文章主要针对移动设备中的Linux进行讨论,文中的例子基本都是基于AR ...

  6. Linux中断 - High level irq event handler

    一.前言 当外设触发一次中断后,一个大概的处理过程是: 1.具体CPU architecture相关的模块会进行现场保护,然后调用machine driver对应的中断处理handler 2.mach ...

  7. linux中断线程化分析【转】

    转自:http://blog.csdn.net/qq405180763/article/details/24120895 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近在为3.8版本的Li ...

  8. Linux中断(interrupt)子系统之一:中断系统基本原理

    这个中断系列文章主要针对移动设备中的Linux进行讨论,文中的例子基本都是基于ARM这一体系架构,其他架构的原理其实也差不多,区别只是其中的硬件抽象层.内核版本基于3.3.虽然内核的版本不断地提升,不 ...

  9. Linux中断管理 (1)Linux中断管理机制【转】

    转自:https://www.cnblogs.com/arnoldlu/p/8659981.html 目录: <Linux中断管理> <Linux中断管理 (1)Linux中断管理机 ...

随机推荐

  1. C标准函数库(常用部分)

  2. Spring依赖注入:注解注入总结

    更多11   spring   依赖注入   注解   java 注解注入顾名思义就是通过注解来实现注入,Spring和注入相关的常见注解有Autowired.Resource.Qualifier.S ...

  3. Redis 数据库

    Redis 服务器     Remote Dictionay Server     Redis是一个key-value持久化产品,通常被称为数据结构服务器.   Redis的key是string类型: ...

  4. xss跨站攻击测试代码

    '><script>alert(document.cookie)</script> ='><script>alert(document.cookie)& ...

  5. Linux 学习笔记(一)

    Linux体系结构 下面是Linux体系结构的示意图: 在所有Linux版本中,都会涉及到以下几个重要概念: 内核:内核是操作系统的核心.内核直接与硬件交互,并处理大部分较低层的任务,如内存管理.进程 ...

  6. centos linux从无到有安装wordpress

    序:本博客从无到有搭建wordpress,包括从服务器和域名购买,会将步骤一步一步记录下来.如果你也是新手,那你有福了,因为我的系统是centos,对号入座啊. 目录 一.准备域名和服务器一.安装ph ...

  7. 二分图最大匹配的K&#246;nig定理及其证明

     二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有.    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...

  8. (7)基本工作流(使用AndroidStudio编辑Cocos项目)

    接下来详细介绍一下如何使用Android Studio打开以及编辑cocos2d-x 3.10项目: 一.新建项目:   新建源代码项目,预编译库项目不支持使用Android Stduio打开,见图1 ...

  9. [Effective JavaScript 笔记]第19条:熟练掌握高阶函数

    高阶函数介绍 高阶函数曾经是函数式编程的一个概念,感觉是很高深的术语.但开发简洁优雅的函数可以使代码更加简单明了.过去几年中脚本语言采用了这些个技术,揭开了函数式编程的最佳惯用法的神秘面纱.高阶函数就 ...

  10. JSP基本面试的试题

    JSP基本面试的试题 1.jsp有哪些内置对象作用分别是什么 答:JSP共有以下9种基本内置组件(可与ASP的6种内部组件相对应):      request 用户端请求,此请求会包含来自GET/PO ...