FileInputFormat
MapReduce框架要处理数据的文件类型 FileInputFormat这个类决定。
TextInputFormat是框架默认的文件类型,可以处理Text文件类型,如果你要处理的文件类型不是Text,
譬如说是Xml或DB,你就需要自己实现或用库中已有的类型。
FileInputFormat的主要方法之一getSplits完成的功能是获取job要处理的路径文件所在的block信息。
数据结构:FileInputSplit 存储了文件的位置信息,如Host,所属文件信息,开始offset,还有长度信息。
public class FileSplit extends InputSplit implements Writable {
private Path file;
private long start;
private long length;
private String[] hosts;
private SplitLocationInfo[] hostInfos;
…
}
方法介绍:
blockSize:块大小
minSize:最小分片大小,由参数mapred.min.split.size设置,默认为1
maxSize:最大分片大小,由参数mapred.max.split.size设置,默认Long.MAX-VALUE
计算splitsize的方法:Math.max(minSize,Math.min(maxSize,blockSize)
FileInputFormat的另一个重要方法是CreateRecordReader.在这个方法里面会用到前面方法所获取到的InpustSplit.这个RecordReader会用来去读取数据,传递给maptask去执行处理。
当InputSplit尺寸大于block并且其对应的所有block(包含副本)不在同一个节点上时,Map Task不可能完全实现数据的本地化,
也就是说,总有一部分数据需要从远程节点上读取,因此得出,当使用基于FileInputFormat实现InputFormat时,为了提高数据本地性,应该尽量使InputSplit大小与block大小一致。
因为不同的文件,在上传的时候可以具体指定blocksize,若不指定则使用系统默认的blocksize,所以在代码中它使用的是file.getblocksize().
若文件的blocksize是32M,我们的文件是70M,而且文件是可以切分的,则系统是如何分片的呢?(根据源代码进行分析)
如果我们的minsize=1,maxsize=128,则计算得到的splitsize=32M,每一个block一个inputsplit.
如果我们的minsize=64,maxsize=128,则计算得到的splitsize=64M, 但因为不满足70/64>1.1的情况,所以还是只会分成一个fileinputsplit,这一个inputsplit包含了两个block的信息。
试想一下,如果还拆分成两个inputsplit让两个map task去做,第二个maptask只获取一点点的数据,利用率不高。
若我们的文件是xml文件类型,不管我们的文件是多大,都只能分给一个InputSplit去处理,因为它的isSplitable=false,xml不能切开处理,那样数据就会乱掉。
/**
* Generate the list of files and make them into FileSplits.
* @param job the job context
* @throws IOException
*/
public List<InputSplit> getSplits(JobContext job) throws IOException {
Stopwatch sw = new Stopwatch().start();
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job); // generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus> files = listStatus(job);
for (FileStatus file: files) {
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
FileSystem fs = path.getFileSystem(job.getConfiguration());
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
if (isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
} if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
}
} else { // not splitable
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
blkLocations[0].getCachedHosts()));
}
} else {
//Create empty hosts array for zero length files
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// Save the number of input files for metrics/loadgen
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
sw.stop();
if (LOG.isDebugEnabled()) {
LOG.debug("Total # of splits generated by getSplits: " + splits.size()
+ ", TimeTaken: " + sw.elapsedMillis());
}
return splits;
}
FileInputFormat的更多相关文章
- Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduce ...
- Hadoop FileInputFormat实现原理及源码分析
FileInputFormat(org.apache.hadoop.mapreduce.lib.input.FileInputFormat)是专门针对文件类型的数据源而设计的,也是一个抽象类,它提供两 ...
- MapReduce :基于 FileInputFormat 的 mapper 数量控制
本篇分两部分,第一部分分析使用 java 提交 mapreduce 任务时对 mapper 数量的控制,第二部分分析使用 streaming 形式提交 mapreduce 任务时对 mapper 数量 ...
- FileInputFormat看这一段源码
这是FileInputFormat中的一个方法,看一下它的功能,多看源码,理解hadoop,同时提高自己的java编程能力: private static String[] getPathString ...
- MapReduce的map个数调节 与 Hadoop的FileInputFormat的任务切分原理
在对日志等大表数据进行处理的时候需要人为地设置任务的map数,防止因map数过小导致集群资源被耗光.可根据大表的数据量大小设置每个split的大小. 例如设置每个split为500M: set map ...
- Hadoop(16)-MapReduce框架原理-自定义FileInputFormat
1. 需求 将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件格式),SequenceFile里面存储着多个文 ...
- 在Hadoop中重写FileInputFormat类以处理二进制格式存储的整数
近期開始使用MapReduce,发现网上大部分样例都是对文本数据进行处理的,也就是说在读取输入数据时直接使用默认的TextInputFormat进行处理就可以.对于文本数据处理,这个类还是能满足一部分 ...
- 继承FileInputFormat类来理解 FileInputFormat类
import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.had ...
- WordCount作业提交到FileInputFormat类中split切分算法和host选择算法过程源码分析
参考 FileInputFormat类中split切分算法和host选择算法介绍 以及 Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputForm ...
随机推荐
- C# 实现WinForm窗口最小化到系统托盘代码,并且判断左右鼠标的事件
1.设置WinForm窗体属性showinTask=false 2.加notifyicon控件notifyIcon1,为控件notifyIcon1的属性Icon添加一个icon图标. 3.添加窗体最小 ...
- HTML页面放大镜效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 浏览器-Tomcat服务器-请求与响应
浏览器访问服务器,本质就是请求资源. 比如请求静态资源:index.html,我们在浏览器地址栏输入:www.a.com/index.html,浏览器为了支持HTTP协议,发送的数据必须符合HTTP协 ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- playframework中多附件上传注意事项
playframework中多附件上传注意事项 2013年09月24日 play 暂无评论 //play版本问题 经确认,1.0.3.2版本下控制器中方法参数 List<File> fi ...
- jQuery源码分析-01总体架构
1. 总体架构 1.1自调用匿名函数 self-invoking anonymous function 打开jQuery源码,首先你会看到这样的代码结构: (function( window, und ...
- SharePoint 新特性及安装需知
以下内容转自Kaneboy 大牛,但我在安装正式版的过程中发现一些问题,主要是.net 版本的问题,弄了我一个晚上,我在下面标出来了.我的安装环境是Windows server 2012 R2 关于详 ...
- MQTT for UWP
老规矩,先简单介绍下MQTT: MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分.该协 ...
- 【读书笔记】iOS-安全地传输用户密码的方法
正确做法:事先生成一对用于加密的公私钥,客户端在登录时,使用公钥将用户的密码加密后,将密文传输到服务器.服务器使用私钥将密码解密,然后加盐之后多次请求MD5,之后再和服务器原来存储的用同样方法处理过的 ...
- IOS SDWebImage实现原理详解
在之前我写过SDWebImage的使用方法,主要是用与获取网络图片,没有看过的朋友可以看看. 这篇文章将主要介绍SDWebImage的实现原理,主要针对于获取网络图片的原理,如果没有第三方我们该怎么去 ...