Eight
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 30176   Accepted: 13119   Special Judge

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x 

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 

 5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 

 9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 

13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 

           r->           d->           r-> 

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement.

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

 1  2  3 

 x  4  6 

 7  5  8 

is described by this list:

 1 2 3 x 4 6 7 5 8 

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

Source

题目链接:POJ 1077

主要就是用康托展开来映射判重的问题,info::val就是康托展开hash值,info::step就是积累的状态。另外感觉这题剧毒,自己本来用int vis[]和char his[]想最后回溯记录答案从而代替速度比较慢的string,结果居然超时……TLE一晚上,要不是看了大牛的博客估计要一直T在这个坑点上。还有不知道为什么string的加号重载在C++编译器里会CE,换G++才过。相比单组输入的POJ,多组输入的HDU就友好多了,打个表就可以水过了,双广、A*神马的写起来麻烦就先不写了……

什么是康托展开?——康托展开介绍文章

POJ代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 362880 + 20;
int fact[10] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
int direct[4][2] = {{ -1, 0}, {1, 0}, {0, -1}, {0, 1}};
char MOVE[5] = "udlr";
struct info
{
int s[9];
int indx;
string step;
int val;
};
info S, E;
int T;
int vis[N];
string ans;
int calcantor(int s[])
{
int r = 0;
for (int i = 0; i < 9; ++i)
{
int k = 0;
for (int j = i + 1; j < 9; ++j)
{
if (s[j] < s[i])
++k;
}
r = r + k * fact[8 - i];
}
return r;
}
bool check(const int &x, const int &y)
{
return (x >= 0 && x < 3 && y >= 0 && y < 3);
}
bool bfs()
{
CLR(vis, 0);
queue<info>Q;
Q.push(S);
vis[S.val] = 1;
info now, v;
while (!Q.empty())
{
now = Q.front();
Q.pop();
if (now.val == T)
{
ans = now.step;
return true;
}
for (int i = 0; i < 4; ++i)
{
int x = now.indx / 3;
int y = now.indx % 3;
x += direct[i][0];
y += direct[i][1];
if (check(x, y))
{
v = now;
v.indx = x * 3 + y;
v.s[now.indx] = v.s[v.indx];
v.s[v.indx] = 0;
v.val = calcantor(v.s);
if (!vis[v.val])
{
vis[v.val] = 1;
v.step = now.step + MOVE[i];
if (v.val == T)
{
ans = v.step;
return true;
}
Q.push(v);
}
}
}
}
return false;
}
int main(void)
{
char temp;
int i;
T = 46233;
while (cin >> temp)
{
if (temp == 'x')
{
S.s[0] = 0;
S.indx = 0;
}
else
S.s[0] = temp - '0';
for (i = 1; i < 9; ++i)
{
cin >> temp;
if (temp == 'x')
{
S.s[i] = 0;
S.indx = i;
}
else
S.s[i] = temp - '0';
}
S.val = calcantor(S.s);
puts(!bfs() ? "unsolvable" : ans.c_str());
}
return 0;
}

HDU代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 362880 + 10;
int fact[10] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
struct info
{
int s[9];
int indx;
string path;
int val;
void cal()
{
val = 0;
for (int i = 0; i < 9; ++i)
{
int k = 0;
for (int j = i + 1; j < 9; ++j)
{
if (s[j] < s[i])
++k;
}
val = val + k * fact[8 - i];
}
}
};
info init = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, 8, "", 0}, S;
int direct[4][2] = {{ -1, 0}, {1, 0}, {0, -1}, {0, 1}}; //ÏÂÉÏÓÒ×ó
char MOV[5] = "durl";
string ans[N];
int vis[N];
void bfs()
{
CLR(vis, 0);
queue<info>Q;
info now, v;
Q.push(init);
vis[init.val] = 1;
ans[init.val] = init.path;
while (!Q.empty())
{
now = Q.front();
Q.pop();
for (int i = 0; i < 4; ++i) //ÏÂÉÏÓÒ×ó
{
int x = now.indx / 3;
int y = now.indx % 3;
x += direct[i][0];
y += direct[i][1];
if (x >= 0 && x < 3 && y >= 0 && y < 3)
{
v = now;
v.indx = x * 3 + y;
v.path = MOV[i] + now.path;
swap(v.s[v.indx], v.s[now.indx]);
v.cal();
if (!vis[v.val])
{
vis[v.val] = 1;
ans[v.val] = v.path;
Q.push(v);
}
}
}
}
}
int main(void)
{
char temp[5], i;
bfs();
while (~scanf("%s", temp))
{
S.path = "";
if (temp[0] == 'x')
{
S.s[0] = 9;
S.indx = 0;
}
else
S.s[0] = temp[0] - '0';
for (i = 1; i < 9; ++i)
{
scanf("%s", temp);
if (temp[0] == 'x')
{
S.s[i] = 9;
S.indx = i;
}
else
S.s[i] = temp[0] - '0';
}
S.cal();
puts(!vis[S.val] ? "unsolvable" : ans[S.val].c_str());
}
return 0;
}

最近学了下IDA*,发现速度贼快,比哈希的不知道高到哪里去了,自己整理了一下一般写法,感觉还是比较模版的,可以参考上一篇IDA*的伪代码,IDA*快到如果用BFS要打表的HDU上的数据可以直接在线搜索过了,确实比较快,这里需要加一个防止走回路的剪枝(有效减少无用搜索),否则可能会超时,当然一开始要判断一下是否输入序列是无解的,可以暂时把x忽略掉,然后算7个数的逆序数,逆序数偶数才有解,奇数直接输出unsolvable,具体原理可以百度一下

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 9;
int arr[N], T[N] = {1, 2, 3, 4, 5, 6, 7, 8, 0};
int Maxdep, top, stdpos[N] = {8, 0, 1, 2, 3, 4, 5, 6, 7};
char Ops[1010]; int dis(int cur, int ori)
{
int x = cur / 3, y = cur % 3;
return abs(x - ori / 3) + abs(y - ori % 3);
}
int Need(int A[])
{
int ret = 0;
for (int i = 0; i < N; ++i)
if (A[i] != T[i])
ret += dis(i, stdpos[A[i]]);
return ret;
}
inline bool check(int x, int y)
{
return x >= 0 && x < 3 && y >= 0 && y < 3;
}
int dfs(int dep, int Arr[], char pre)
{
int need = Need(Arr);
if (need == 0)
return 1;
else if (need + dep > Maxdep)
return 0;
else
{
int x, y, idx, i;
int Temp[N];
for (int i = 0; i < N; ++i)
{
if (Arr[i] == 0)
{
idx = i;
break;
}
}
x = idx / 3, y = idx % 3;
if (pre != 'u' && check(x + 1, y))
{
for (i = 0; i < N; ++i)
Temp[i] = Arr[i];
swap(Temp[(x + 1) * 3 + y], Temp[idx]);
Ops[top++] = 'd';
if (dfs(dep + 1, Temp, 'd'))
return 1;
else
--top;
}
if (pre != 'l' && check(x, y + 1))
{
for (i = 0; i < N; ++i)
Temp[i] = Arr[i];
swap(Temp[x * 3 + y + 1], Temp[idx]);
Ops[top++] = 'r';
if (dfs(dep + 1, Temp, 'r'))
return 1;
else
--top;
}
if (pre != 'd' && check(x - 1, y))
{
for (i = 0; i < N; ++i)
Temp[i] = Arr[i];
swap(Temp[(x - 1) * 3 + y], Temp[idx]);
Ops[top++] = 'u';
if (dfs(dep + 1, Temp, 'u'))
return 1;
else
--top;
}
if (pre != 'r' && check(x, y - 1))
{
for (i = 0; i < N; ++i)
Temp[i] = Arr[i];
swap(Temp[x * 3 + y - 1], Temp[idx]);
Ops[top++] = 'l';
if (dfs(dep + 1, Temp, 'l'))
return 1;
else
--top;
}
}
return 0;
}
int main(void)
{
char n[3];
int i, j, x;
while (~scanf("%s", n))
{
if (n[0] == 'x')
x = 0;
else
x = n[0] - '0';
arr[0] = x;
for (i = 1; i < 9; ++i)
{
scanf("%s", n);
if (n[0] == 'x')
x = 0;
else
x = n[0] - '0';
arr[i] = x;
}
int inv = 0;
for (i = 0; i < N; ++i)
{
if (arr[i] == 0)
continue;
for (j = i + 1; j < N; ++j)
{
if (arr[j] == 0)
continue;
if (arr[i] > arr[j])
++inv;
}
}
if (inv & 1)
puts("unsolvable");
else
{
top = 0;
Maxdep = 1;
while (!dfs(0, arr, -1))
++Maxdep;
Ops[top] = '\0';
puts(Ops);
}
}
return 0;
}

HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)的更多相关文章

  1. Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  2. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  4. Eight hdu 1043 poj 1077

    Description The 15-puzzle has been around for over 100 years; even if you don't know it by that name ...

  5. HDU 1043 Eight (A* + HASH + 康托展开)

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  6. HDU 3567 Eight II 打表,康托展开,bfs,g++提交可过c++不可过 难度:3

    http://acm.hdu.edu.cn/showproblem.php?pid=3567 相比Eight,似乎只是把目标状态由确定的改成不确定的,但是康托展开+曼哈顿为h值的A*和IDA*都不过, ...

  7. hdu 1043 Eight (八数码问题)【BFS】+【康拓展开】

    <题目链接> 题目大意:给出一个3×3的矩阵(包含1-8数字和一个字母x),经过一些移动格子上的数后得到连续的1-8,最后一格是x,要求最小移动步数. 解题分析:本题用BFS来寻找路径,为 ...

  8. [HDOJ1043]Eight(康托展开 BFS 打表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 八数码问题,因为固定了位置所以以目标位置开始搜索,把所有情况(相当于一个排列)都记录下来,用康托 ...

  9. hdu1043Eight (经典的八数码)(康托展开+BFS)

    建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle ...

随机推荐

  1. SpringJDBC的简单应用

    此处写上应用JdbcTemplate的dao操作数据库的一些代码(含基本的增删改查,注:重点是查询出多条语句的写法): package org.sakaiproject.zhaorui.dao.imp ...

  2. KMP模式匹配_2

    http://blog.csdn.net/lin_bei/article/details/1252686 三. 怎么求串的模式值next[n] 定义: (1)next[0]= -1 意义:任何串的第一 ...

  3. svn: warning: 'xxxxxx' is already under version control

    [root@NGINX-APACHE-SVN pm]# svn status ? plugins ? files ? images ? data ? resources [root@NGINX-APA ...

  4. Web服务器原理及简单实现

    Web系统由客户端(浏览器)和服务器端两部分组成.Web系统架构也被称为B/S架构.最常见的Web服务器有Apache.IIS等,常用的浏览器有IE.Firefox.chrome等.当你想访问一个网页 ...

  5. [译]SQL Server 之 查询计划的简单参数化

    SQL Server能把一些常量自动转化为参数,以重用这些部分的查询计划. SELECT FirstName, LastName, Title FROM Employees WHERE Employe ...

  6. codeforces732D 二分加贪心。。

    啊,不好意思..这个题窝也不会,看了网上的题解做的.. 先说一下题意.. 你要考试了..然后你有n天的时间准备以及进行考试 并且,每一天..要么你花一天时间去考一门(每天只能考一门),要么花一天时间休 ...

  7. radioButton

    布局: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tool ...

  8. 【web JSP basePath】basePath的含义

    问题1:WEB-INF的问题 今天新创建项目,在JSP中引入外部的JS文件和CSS文件,但是路径一直显示错误: 其中JSP页面引入这几个文件是这么写的: <link rel="styl ...

  9. dedecms创建或修改目录失败

    并且后台修改系统参数无法写入! 原因是:文件夹无写入权限!

  10. IoC模式(转)

    IoC模式 1.依赖 依赖就是有联系,有地方使用到它就是有依赖它,一个系统不可能完全避免依赖.如果你的一个类或者模块在项目中没有用到它,恭喜你,可以从项目中剔除它或者排除它了,因为没有一个地方会依赖它 ...