证明ln2=0 和 2=1
我们知道下式成立:
\begin{equation}\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots\label{eq1}\end{equation}
所以有:
\begin{equation}\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\label{eq2}\end{equation}
现在我们来证明 \(\ln2=0\)。
\begin{equation*}\begin{split}\ln 2 =& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )-\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )+\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right )- \\\\&2\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right )-\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right ) \\\\=&0\end{split}\end{equation*}
得证。
现在我们来证明 \(2=1\)。
已知:
\begin{equation*}\ln 2 = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\ldots\end{equation*}
两边乘以 \(2\),有:
\begin{equation*}\begin{split}2 \ln 2 =& 2-1+\frac{2}{3}-\frac{1}{2}+\frac{2}{5}-\frac{1}{3}+\frac{2}{7}-\frac{1}{4}+\frac{2}{9}-\frac{1}{5}+\ldots \\\\=&1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\ldots \\\\=&\ln 2 \end{split}\end{equation*}
所以有:
\begin{equation*} 2 = 1\end{equation*}
以上这两个荒谬的结论的证明,哪里出了问题?
问题在于 \(\ln(1+x)\) 展开成的级数方程\eqref{eq1}不是绝对收敛的,而是条件收敛的,条件收敛的级数是不可以任意调整级数各项的位置的。
证明ln2=0 和 2=1的更多相关文章
- 证明 logX < X 对所有 X > 0 成立
题目取自:<数据结构与算法分析:C语言描述_原书第二版>——Mark Allen Weiss 练习1.5(a) 证明下列公式: logX < X 对所有 X > ...
- MT【16】证明无理数(2)
证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...
- MT【15】证明无理数(1)
证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...
- xor定理证明
xor 证明: 0 xor 0=0 0 xor 1=1 1 xor 0=1 1 xor 1=0 0 xor 其它数,数值不会改变1 xor 其它数,数值会反转 所以x个数0和y个数1进行xor运算(0 ...
- Webx.0-Web3.0:Web3.0
ylbtech-Webx.0-Web3.0:Web3.0 Web3.0只是由业内人员制造出来的概念词语,最常见的解释是,网站内的信息可以直接和其他网站相关信息进行交互,能通过第三方信息平台同时对多家网 ...
- [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法
\(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...
- OpenCASCADE Rational Bezier Curves
OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...
- 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...
- (原)解决.NET 32位程序运行在64位操作系统下的兼容性问题
背景:一个第三方组件是C++.NET 32位开发的,后被C#(基于FrameWork4.0)调用并封装成组件,此二次封装的组件无法运行于64位操作系统上. 开发环境:VS2012:解决 ...
随机推荐
- python实现简易数据库之一——存储和索引建立
最近没事做了一个数据库project,要求实现一个简单的数据库,能满足几个特定的查询,这里主要介绍一下我们的实现过程,代码放在过ithub,可参看这里.都说python的运行速度很慢,但因为时间比较急 ...
- 8.HBase In Action 第一章-HBase简介(1.2.2 捕获增量数据)
Data often trickles in and is added to an existing data store for further usage, such as analytics, ...
- Stream 流操作
Stream 类 先看下面的图 Stream 是所有流的抽象基类(不能被实例化,需要使用他的派生类FileStream/MemoryStream/BufferedStream).流是字节序列的抽象概 ...
- C# Winform实现炫酷的透明动画界面
做过.NET Winform窗体美化的人应该都很熟悉UpdateLayeredWindow吧,UpdateLayeredWindow可以实现窗体的任意透明,效果很好,不会有毛边.不过使用这个API之后 ...
- 微信支付开发-Senparc.Weixin.MP详解
年底了,反而工作更忙了,我从15年11月开始写<1024伐木累>系列小说和爆笑对白,得到了很多身边的技术好友的支持,现在爆笑对白已经有越来越多的朋友一起帮着写段子,整理,包括小说内容的编辑 ...
- 谈谈iOS9中的WebKit 与 Safari
每个用过 UIWebView 的iOS开发者对其诸多的限制和有限的功能也深有感触.悻然,自iOS8推出 WebKit 框架后将改变这一窘境.在本文我将会深入WebKit来体验一下它给我们带来的好处,同 ...
- 分享两个你可能不知道的Java小秘密
引言 最近LZ的工作发生了重大变化,以后博文的更新速度可能会再度回温,希望猿友们可以继续关注. 近期LZ辞掉了项目经理的工作,不过并未离开公司,是转到了基础研发部做更基础的研发,为广大技术人员服务.这 ...
- 机器学习中的矩阵方法(附录A): 病态矩阵与条件数
1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 4 ...
- 关于RESTFul初步理解
RESTFul架构:是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用. 即:Representational State Transfer 表现 ...
- 重构笔记---MEF框架(下)
概述 上一篇介绍了MEF的一个很简单很基本的应用,实现了MEF框架并展示了MEF框架的一些基本的要求和设置,这些基础知识很重要,接下来我们分析一下如何扩展或增强MEF框架内容. 增强的Contract ...