题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=3549

Flow Problem

Description

Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input

The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output

For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input

2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1

Sample Output

Case 1: 1
Case 2: 2

裸的最大流dinic,测模板。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using std::min;
using std::find;
using std::sort;
using std::pair;
using std::queue;
using std::vector;
using std::multimap;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 1100;
const int INF = 0x3f3f3f3f;
struct Dinic {
struct edge { int to, cap, next, rev; }G[N << 2];
int s, t, tot, level[N], ite[N], head[N];
inline void init() {
tot = 0, cls(head, -1);
}
inline void add_edge(int u, int v, int cap) {
G[tot] = (edge){ v, cap, head[u], tot + 1 }; head[u] = tot++;
G[tot] = (edge){ u, 0, head[v], tot - 1 }; head[v] = tot++;
}
inline void built(int n, int m) {
int u, v, f;
s = 1, t = n;
while(m--) {
scanf("%d %d %d", &u, &v, &f);
add_edge(u, v, f);
}
}
inline void bfs(int s) {
cls(level, -1);
queue<int> q;
q.push(s);
level[s] = 0;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = G[i].next) {
edge &e = G[i];
if(e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[u] + 1;
q.push(e.to);
}
}
}
}
inline int dfs(int u, int t, int f) {
if(u == t) return f;
for(int &i = ite[u]; ~i; i = G[i].next) {
edge &e = G[i];
if(e.cap > 0 && level[u] < level[e.to]) {
int d = dfs(e.to, t, min(e.cap, f));
if(d > 0) {
e.cap -= d;
G[e.rev].cap += d;
return d;
}
}
}
return 0;
}
inline int max_flow() {
int flow = 0;
while(true) {
bfs(s);
if(level[t] < 0) break;
int f;
rep(i, t) ite[i] = head[i];
while((f = dfs(s, t, INF)) > 0) {
flow += f;
}
}
return flow;
}
inline void solve(int n, int m) {
static int k = 1;
init(), built(n, m);
printf("Case %d: %d\n", k++, max_flow());
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int t, n, m;
scanf("%d", &t);
while(t--) {
scanf("%d %d", &n, &m);
go.solve(n, m);
}
return 0;
}

hdu 3549 Flow Problem的更多相关文章

  1. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  2. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  3. hdu 3549 Flow Problem【最大流增广路入门模板题】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others ...

  4. hdu 3549 Flow Problem Edmonds_Karp算法求解最大流

    Flow Problem 题意:N个顶点M条边,(2 <= N <= 15, 0 <= M <= 1000)问从1到N的最大流量为多少? 分析:直接使用Edmonds_Karp ...

  5. HDU 3549 Flow Problem 网络流(最大流) FF EK

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  6. hdu 3549 Flow Problem (网络最大流)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  7. HDU 3549 Flow Problem (最大流ISAP)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  8. hdu 3549 Flow Problem (Dinic)

    Flow ProblemTime Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  9. hdu 3549 Flow Problem 最大流问题 (模板题)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

随机推荐

  1. BFPRT(线性查找算法)

    BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度.该算法的思想与快速排序思想相似,当然,为使得算法 ...

  2. 【spring 6】Spring和Hibernate的整合:编程式事务

    一.编程式事务简介 在 Spring 出现以前,编程式事务管理对基于 POJO 的应用来说是唯一选择.用过 Hibernate 的人都知道,我们需要在代码中显式调用beginTransaction() ...

  3. PAT1013. Battle Over Cities(邻接矩阵、邻接表分别dfs)

    //采用不同的图存储结构结构邻接矩阵.邻接表分别dfs,我想我是寂寞了吧,应该试试并查集,看见可以用并查集的就用dfs,bfs代替......怕了并查集了 //邻接矩阵dfs #include< ...

  4. a different object with the same identifier value was already associat

    问题:这个著名的托管态update更新异常 org.hibernate.NonUniqueObjectException: a different object with the same ident ...

  5. 查询Sql Server Agent 的job的执行情况。

    //有关SqlJob的信息在database(msdb)内查询.select j.job_id, j.name, j.enabled, jh.run_status, js.last_outcome_m ...

  6. vba 快速定位当前EXCEL最后一栏

    工作的需要,有时会对EXCEL数据进行处理,比如格式化,有数据的单元格画横线. 最初,傻傻的,直接用个循环从第1行,一直往后找,判断是否为空,真傻. Function FindLastCell() D ...

  7. JS常用的设计模式(9)——策略模式

    策略模式的意义是定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换.一个小例子就能让我们一目了然. 回忆下jquery里的animate方法. $( div ).animate( {&quo ...

  8. hbase日常运维管用命令,region管理

    1         Hbase日常运维 1.1       监控Hbase运行状况 1.1.1        操作系统 1.1.1.1 IO 群集网络IO,磁盘IO,HDFS IO IO越大说明文件读 ...

  9. 关于hbase的read操作的深入研究 region到storefile过程

    这里面说的read既包括get,也包括scan,实际底层来看这两个操作也是一样的.我们将要讨论的是,当我们从一张表读取数据的时候hbase到底是怎么处理的.分二种情况来看,第一种就是表刚创建,所有pu ...

  10. 1.4Linux内核版本号的定义规则

    Linux内核版本号的组成: (1)主版本号: (2)次版本号: (3)修订版本号: (4)微调版本号: (5)为特定的Linux系统特别调校的描述: 例子:2.6.29.7-flykernel-12 ...