.Net 2.0引入了轻量级事务管理器(Lighweight Transaction Manager),即System.Transactions.TransactionManager。

  轻量级事务管理器具有最小的开销,对比使用轻量级事务管理器的事务和直接使用本地事务,并没有性能上的差别。

        如果一个事务里只有一个资源管理器,轻量级事务管理器可以让资源管理器来管理该事务,而轻量级事务管理器只负责监视他;如果轻量级事务管理器发现有另外一个资源管理器被加入到事务中,轻量级事务管理器则会让原来的资源管理器释放控制权,并将控制权交给分布式事务处理器协调。
    控制权在事务还在进行时转移给分布式事务处理协调器的这个过程称为事务升级(promotion pf a transaction)。
 
使用Demo
   1)在要程序中添加system.TransAction.dll程序集的引用。如图:
      
  2)使用TransActionScope。
    

 using (TransactionScope tan = new TransactionScope())
{
//向第一个数据库的Fm_ArticlePro添加一条数据
RySfEntities db1 = new RySfEntities();
Fm_ArticlePro fmArticle = new Fm_ArticlePro();
fmArticle.FArP_DepID = ;
fmArticle.FArP_DepName = "ceshi";
fmArticle.FArP_Time = DateTime.Now.ToLongTimeString();
db1.Fm_ArticlePro.Add(fmArticle);
db1.SaveChanges(); //int n = 0;
//int m = 9/n;//故意制造错误来测试是否插入数据 //向另外一个数据库Department表添加一条数据
ESIMSDataEntities1 db2 = new ESIMSDataEntities1();
Department d = new Department();
d.Dept_ID = ;
d.Dept_Description = DateTime.Now.ToLongTimeString();
d.Dept_Name = "ceshi";
db2.Department.Add(d);
db2.SaveChanges(); tan.Complete();
}

  3)启动DTC服务。

    桌面右击“计算机” —> 管理 —> 服务和应用程序 —> 服务。
      
    或者用命令启动:net start msdtc;
  4)运行测试。
 
  总结:很多时候,我们都只是做了第一步和第二步,而忘记启动协调跨多个数据库的DTC服务。这样就会出现一个错误,如下。

---------------------------

---------------------------
错误:基础提供程序在 Open 上失败。
---------------------------
确定
---------------------------

  出现错误了数据也不会被插入到数据库。

说明:在步骤2)中是使用的隐式方法(使用system.Transactions.TransactionScope类),该方法更加灵活,因此更加适合。显示方法会使用system.Transactions.CommittableTransaction类。

  

TransactionScope事务对多个数据库的操作的更多相关文章

  1. (四)SQL入门 数据库的操作与事务管理

    数据库的操作,有三个最基本的语句,insert插入,update修改,delete删除. 不同的数据库厂商的实现可能不同,所以就不说具体的语法怎么写的了.说语法也没有意义,到处都可以复制粘贴,记得听某 ...

  2. spring对数据库的操作、spring中事务管理的介绍与操作

    jdbcTemplate的入门 创建maven工程 此处省略 导入依赖 <!-- https://mvnrepository.com/artifact/org.springframework/s ...

  3. 数据库ACID操作---事务四原则

    事务操作四原则: 1>原子性:简单来说——整个事务操作如同原子已经是物理上最小的单位,不可分离事务操作要么一起成功,要么一起失败. 2>一致性:倘若事务操作失败,则回滚事务时,与原始状态一 ...

  4. NHibernet 事务 修改操作,事务没提交,数据库数据却同步(修改)了

    Nhibernet 缓存 由于查询出来的数据和缓存关联,更新之后就算事务没执行提交操作,数据库依旧会更新,解决方法, 清空缓存,实例不和缓存关联,如下面标红代码 public bool UpdateT ...

  5. c#传统SqlTransaction事务和TransactionScope事务

    事务有很多种,看了一些关于事务的问题,这里做下笔记····· 事务时单个的工作单位.如果某一事务成功,则在该事务中进行的所有数据更改均会提交,成为数据库中永久的组成部分.若果事务遇到错误,则必须取消或 ...

  6. C# TransactionScope 事务类

    微软自带的TransactionScope(.Net Framework 2之后)是个好东东,提供的功能也很强大. 首先说说TransactionScope是什么,并能为我们做什么事情.其实看Tran ...

  7. python数据库(mysql)操作

    一.软件环境 python环境默认安装了sqlite3,如果需要使用sqlite3我们直接可以在python代码模块的顶部使用import sqlite3来导入该模块.本篇文章我是记录了python操 ...

  8. MYSQL数据库的操作

    Mysql的连接方式: 1.原生函数:mysql_connect($server,$username,$password);   //打开一个到Mysql服务器的连接 mysql_select_db( ...

  9. Python学习(21)python操作mysql数据库_操作

    目录 数据库连接 创建数据库表 数据库插入操作 数据库查询操作 数据库更新操作 删除操作 执行事务 错误处理 数据库连接 连接数据库前,请先确认以下事项: 您已经创建了数据库 TEST. 在TEST数 ...

随机推荐

  1. the specified child alread has a parent

    用 TestFragment   extends  Fragment     @Override     public  View onCreateView(LayoutInflater inflat ...

  2. 【MySQL】ERROR 1045 (28000): Access denied for user的解决方法

    去官网下载压缩版的MySQL Server,解压配置path环境变量后.然后克隆my-default.ini创建my.ini文件,在文件中[mysqld]下面配置basedir和datadir bas ...

  3. JAVA使用DES加密算法加密解密

    程序中使用了.properties文件作为参数配置文档,好处是灵活配置各项参数 一旦对数据库的一些参数进行了配置,势必涉及数据库的IP,端口,用户名和密码 properties文件全是unicode编 ...

  4. Windows 桌面软件:不绑定bing搜索的缤纷桌面

    bing:世界上最好的壁纸提供商  ^.^一直垂涎着Bing的壁纸,总是想找机会来一番邂逅. 之前使用bing自家的缤纷桌面.这个软件缺点就是和bing搜索绑定太厉害,放在桌面上感觉那个黑色的条框很碍 ...

  5. 《自己动手写操作系统》pmtest2笔记

    ;DispReturn模拟一个回车的显示,(让下一个要显示的字符在下一行的开头处显示),其中edi始终指向要显示的下一个字符的位置.;   ------------------------------ ...

  6. HDU 1950 Bridging signals

    那么一大篇的题目描述还真是吓人. 仔细一读其实就是一个LIS,还无任何变形. 刚刚学会了个二分优化的DP,1A无压力. //#define LOCAL #include <iostream> ...

  7. HDU 1317 XYZZY【Bellman_Ford判断正环】

    题意:给出n个房间,初始在房间1有100的能量值,每次进入一个房间,能量值可能增加也可能减小,(是点权,不是边权),问能否到达终点的时候能量值还为正 这题自己写的时候wa--wa-- 后来看了题解,还 ...

  8. Amazium源码分析:(1)基本介绍

    前言 Amazium是一个网格系统的框架,分析该源码的目的是了解网格系统的实现. 网格系统 定义:设计美观页面布局的方式,上图能够很直观的了解什么是网格系统. 基本概念 column: 列. gutt ...

  9. hihoCoder #1182 欧拉路·三 (变形)

    题意: 写出一个环,环上有2^n个格子,每个格子中的数字是0或1,相连着的n个格子可以组成一个数的二进制,要求给出这2^n个数字的序列,使得组成的2^n个数字全是不同的.(即从0到2^n-1) 思路: ...

  10. 【英语】Bingo口语笔记(74) - put系列