POJ 1422 二分图(最小路径覆盖)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 7278 | Accepted: 4318 |
Description
With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.
Input
no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets
The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.
There are no blank lines between consecutive sets of data. Input data are correct.
Output
Sample Input
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3
Sample Output
2
1
Source
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
using namespace std; #define N 205 int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
int abs(int x,int y){return x<?-x:x;} int n, m;
bool visited[N];
vector<int>ve[N];
int from[N]; int march(int u){
int i, j, k, v;
for(i=;i<ve[u].size();i++){
v=ve[u][i];
if(!visited[v]){
visited[v]=true;
if(from[v]==-||march(from[v])){
from[v]=u;
return ;
}
}
}
return ;
} main()
{
int t, i, j, k;
int u, v;
cin>>t;
while(t--){ scanf("%d %d",&n,&m);
for(i=;i<=n;i++) ve[i].clear();
for(i=;i<m;i++){
scanf("%d %d",&u,&v);
ve[u].push_back(v);
}
memset(from,-,sizeof(from));
int num=;
for(i=;i<=n;i++){
memset(visited,false,sizeof(visited));
if(march(i)) num++;
}
printf("%d\n",n-num);
}
}
POJ 1422 二分图(最小路径覆盖)的更多相关文章
- Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...
- POJ 3020 (二分图+最小路径覆盖)
题目链接:http://poj.org/problem?id=3020 题目大意:读入一张地图.其中地图中圈圈代表可以布置卫星的空地.*号代表要覆盖的建筑物.一个卫星的覆盖范围是其周围上下左右四个点. ...
- POJ 1422 DAG最小路径覆盖
求无向图中能覆盖每个点的最小覆盖数 单独的点也算一条路径 这个还是可以扯到最大匹配数来,原因跟上面的最大独立集一样,如果某个二分图(注意不是DAG上的)的边是最大匹配边,那说明只要取两个端点只要一条边 ...
- [bzoj2150]部落战争_二分图最小路径覆盖
部落战争 bzoj-2150 题目大意:题目链接. 注释:略. 想法: 显然是最小路径覆盖,我们知道:二分图最小路径覆盖等于节点总数-最大匹配. 所以我们用匈牙利或者dinic跑出最大匹配,然后用总结 ...
- POJ 3020 Antenna Placement (二分图最小路径覆盖)
<题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- hdu 1151 Air Raid(二分图最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS Memory Limit: 10000K To ...
- HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)
题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...
- POJ3020 Antenna Placement(二分图最小路径覆盖)
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
随机推荐
- [转载] Linux下高并发socket最大连接数所受的各种限制
原文: http://mp.weixin.qq.com/s?__biz=MzAwNjMxNjQzNA==&mid=207772333&idx=1&sn=cfc8aadb422f ...
- linux学习笔记2-命令总结2
权限管理命令 chmod 其他权限管理名 chgrp chown umask ========================================================= ...
- EAPOL 协议
EAPOL 协议 一.基本概念 EAPOL 的全称为 Extensible Authentication Protocol Over LAN,即 EAP Over Lan,也即基于局域网的扩展认证协议 ...
- Jquery_改变背景颜色
$(this).addClass("car_check").siblings().removeClass("car_check");//设置全部车辆为选中状态
- PHP工程师突破
身边有几个做PHP开发的朋友,因为面试,也接触到不少的PHP工程师,他们常疑虑自己将来在技术上的成长与发展,我常给他们一些建议,希望他们能破突自己,有更好的发展. PHP工程师面临成长瓶颈 先明确我所 ...
- Hbase之更新单条数据
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; impo ...
- C#的对象内存模型
转载自:http://www.cnblogs.com/alana/archive/2012/07/05/2577893.html C#的对象内存模型: 一.栈内存和堆内存1.栈内存 由编译器自动分配和 ...
- robotframework笔记27
文档格式 可以使用简单的HTML格式 测试套件 , 测试用例 和 用户关键字 文档和 免费测试套件 元数据 在测试数据,以及当 记录测试 库 . 格式类似于大多数使用的风格 维基百科,它被设计成可以理 ...
- WANL标准组织介绍-02
无线电管理委员会 FCC ETSI IEEE Wi-Fi IETF WAPI 国家无线电管理委员会认证 国家无线电管理委员会认证(State Radio Regulatory Commission o ...
- 学编程,学单词.....在学习中积累自己的单词(不断更新__ing)
可以去肆意大话天下,可以去小民一般的言语,但是一定要清楚,知识的积累,至于心中,即便你说这粗俗的话,你的个性,气质依旧在那,比如北大的那啥教师(心中的典范),也只有这样,你才能低至市井,上至高阁... ...