此题可用线段树或静态二叉树来做。

考虑用线段树:

很容易想到先限定矩形横轴范围再考虑在此纵轴上矩形内物品总价值的最大值。

那么枚举矩形横轴的复杂度是O(n)的,考虑如何快速获取纵轴上的最大值。

我们不可能再次枚举纵轴,依次统计,这样做事多余的。

考虑窗口在纵轴上的滑动,每上升到一个新的高度,在加入新元素的同时只需将最底层的那些值弹出队列即可。

这样我们需要考虑队列上元素和的最大值。

我们从反面考虑每个元素对特定队列(矩形纵轴位置)的贡献。

枚举窗口的上面一条边,那么元素对窗口贡献正值当且仅当H(element) < H(window_top) - b。

否则对窗口贡献0。

注意到变化是连续的,考虑统计所有高度不超过枚举高度的物品总价值减去那些高度低于窗口下端的物品总价值。

这样我们可以对每个点辅助构造一个对应的虚拟点,位置恰在该点上方b处,权值为是原点的相反数。

于是队列和的最大值变成统计前缀最大值。

y轴上离散化用线段是维护即可,x轴控制进出队。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e5 + ;
typedef __int64 LL;
struct Seg{
LL l, r;
LL sum, maxl;
}seg[maxn << ];
LL n, a, b;
LL k;
LL base, len;
struct Point{
LL x, y, z;
Point(LL x = , LL y = , LL z = ) : x(x), y(y), z(z) {}
}t[maxn << ]; bool cmp1(Point a, Point b){
return a.y < b.y;
} bool cmp2(Point a, Point b){
return a.x < b.x;
} void build(LL u, LL l, LL r){
seg[u].l = l, seg[u].r = r;
seg[u].maxl = seg[u].sum = ;
if(r - l < ) return;
LL mid = (l + r) >> ;
build(u << , l, mid);
build(u << | , mid, r);
} void push_up(LL u){
seg[u].sum = seg[u << ].sum + seg[u << | ].sum;
seg[u].maxl = max(seg[u << ].maxl, seg[u << ].sum + seg[u << | ].maxl);
} void add(LL u, LL l, LL r, LL L, LL R, LL from, LL d){
if(l == L && r == R){
seg[u].maxl += d * t[from].z;
seg[u].sum += d * t[from].z;
return;
}
LL mid = (l + r) >> ;
if(R <= mid) add(u << , l, mid, L, R, from, d);
else if(L >= mid) add(u << | , mid, r, L, R, from, d);
push_up(u);
} int main(){
//freopen("in.txt", "r", stdin);
while(~scanf("%I64d%I64d%I64d", &n, &a, &b)){
for(LL i = , x, y, z; i <= n; i++){
scanf("%I64d%I64d%I64d", &x, &y, &z);
t[i] = Point(x, y, z);
t[i + n] = Point(x, y + b, -z);
}
len = n << ;
sort(t + , t + len + , cmp1);
base = t[].y;
t[].y = ;
for(LL i = ; i <= len; i++){
if(t[i].y == base) t[i].y = t[i - ].y;
else{
base = t[i].y;
t[i].y = t[i - ].y + ;
}
}
LL high = t[len].y;
sort(t + , t + len + , cmp2);
base = ;
while(base <= len && t[base].x - t[].x < a) ++base;
build(, , high + );
for(LL i = ; i < base; i++) add(, , high + , t[i].y, t[i].y + , i, );
LL ans = seg[].maxl;
LL pre = ;
for(LL i = base; i < len + ; i++){
LL tp = pre;
while(tp < len + && t[i].x - t[tp].x >= a) ++tp;
for(LL j = pre; j < tp; j++) add(, , high + , t[j].y, t[j].y + , j, -);
LL tem = i;
while(i < len && t[i + ].x == t[i].x) ++i;
for(LL j = tem; j <= i; j++) add(, , high + , t[j].y, t[j].y + , j, );
ans = max(ans, seg[].maxl);
pre = tp;
}
printf("%I64d\n", ans);
}
return ;
}

poj2482 Stars in Your Window的更多相关文章

  1. POJ2482 Stars in Your Window(扫描线+区间最大+区间更新)

    Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw you? I stil ...

  2. POJ2482 Stars in Your Window 和 test20180919 区间最大值

    Stars in Your Window Language:Default Stars in Your Window Time Limit: 1000MS Memory Limit: 65536K T ...

  3. POJ2482 Stars in Your Window 题解

    Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw you? I stil ...

  4. Poj2482 Stars in Your Window(扫描线)

    题面 Poj 题解 下面内容引用自"李煜东 <算法竞赛进阶指南>"(对原文略有缩减,侵删): 因为矩形的大小固定,所以矩形可以由它的任意一个顶点唯一确定.我们可以考虑把 ...

  5. 【POJ2482】Stars in Your Window

    [POJ2482]Stars in Your Window 题面 vjudge 题解 第一眼还真没发现这题居然™是个扫描线 令点的坐标为\((x,y)\)权值为\(c\),则 若这个点能对结果有\(c ...

  6. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  7. 【POJ2482】【线段树】Stars in Your Window

    Description Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw ...

  8. 51nod 1208 && POJ 2482:Stars in Your Window

    1208 Stars in Your Window 题目来源: Poj 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  取消关注 整点上有N颗星星,每颗 ...

  9. POJ 2482 Stars in Your Window 线段树扫描线

    Stars in Your Window   Description Fleeting time does not blur my memory of you. Can it really be 4 ...

随机推荐

  1. eclipse启动无响应,停留在Loading workbench状态

    做开发的同学们或多或少的都会遇到eclipse启动到一定程度时,就进入灰色无响应状态再也不动了.启动画面始终停留在Loading workbench状态.反复重启,状态依旧. 多数情况下,应该是非正常 ...

  2. java 笔记(3) —— 动态代理,静态代理,cglib代理

    0.代理模式 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口. 代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后处理消息等. 代理类与委托类之间通常会存 ...

  3. (Abstract Factory)抽象工厂

    定义: 抽象工厂同工厂方法有相似处:都提供了对子类创建的封装,都是有工厂方法的接口实现类的中决定了子类被创建为什么对象. 不同于工厂方法之处:工厂方法创建的对象只是一个类型的子类,而抽象工厂创建的对象 ...

  4. spring AutowireCapableBeanFactory 自动注入

    文档:http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/Auto ...

  5. Swift游戏实战-跑酷熊猫 00 游戏预览

    这个系列我们将要一起来做一个这样的游戏

  6. 超炫的3D HTML源代码

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  7. .NET: C#: 获取当前路径

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.X ...

  8. springday04-go2

    练习:计算一个人的bmi指数.算法如下: 身高 单位是米 比如1.70 体重 单位是公斤 比如90 bmi指数 = 体重/身高/身高 如果bmi>24过重,否则正常.视图需要两个,一个是bmi_ ...

  9. Android Handler练习

    package com.example.myact12; import java.util.Random; import android.support.v7.app.ActionBarActivit ...

  10. mysql设置时区方法

    set global time_zone = '+2:00'; ##修改mysql全局时区 set time_zone = '+2:00'; ##修改当前会话时区 flush privileges; ...