此题可用线段树或静态二叉树来做。

考虑用线段树:

很容易想到先限定矩形横轴范围再考虑在此纵轴上矩形内物品总价值的最大值。

那么枚举矩形横轴的复杂度是O(n)的,考虑如何快速获取纵轴上的最大值。

我们不可能再次枚举纵轴,依次统计,这样做事多余的。

考虑窗口在纵轴上的滑动,每上升到一个新的高度,在加入新元素的同时只需将最底层的那些值弹出队列即可。

这样我们需要考虑队列上元素和的最大值。

我们从反面考虑每个元素对特定队列(矩形纵轴位置)的贡献。

枚举窗口的上面一条边,那么元素对窗口贡献正值当且仅当H(element) < H(window_top) - b。

否则对窗口贡献0。

注意到变化是连续的,考虑统计所有高度不超过枚举高度的物品总价值减去那些高度低于窗口下端的物品总价值。

这样我们可以对每个点辅助构造一个对应的虚拟点,位置恰在该点上方b处,权值为是原点的相反数。

于是队列和的最大值变成统计前缀最大值。

y轴上离散化用线段是维护即可,x轴控制进出队。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e5 + ;
typedef __int64 LL;
struct Seg{
LL l, r;
LL sum, maxl;
}seg[maxn << ];
LL n, a, b;
LL k;
LL base, len;
struct Point{
LL x, y, z;
Point(LL x = , LL y = , LL z = ) : x(x), y(y), z(z) {}
}t[maxn << ]; bool cmp1(Point a, Point b){
return a.y < b.y;
} bool cmp2(Point a, Point b){
return a.x < b.x;
} void build(LL u, LL l, LL r){
seg[u].l = l, seg[u].r = r;
seg[u].maxl = seg[u].sum = ;
if(r - l < ) return;
LL mid = (l + r) >> ;
build(u << , l, mid);
build(u << | , mid, r);
} void push_up(LL u){
seg[u].sum = seg[u << ].sum + seg[u << | ].sum;
seg[u].maxl = max(seg[u << ].maxl, seg[u << ].sum + seg[u << | ].maxl);
} void add(LL u, LL l, LL r, LL L, LL R, LL from, LL d){
if(l == L && r == R){
seg[u].maxl += d * t[from].z;
seg[u].sum += d * t[from].z;
return;
}
LL mid = (l + r) >> ;
if(R <= mid) add(u << , l, mid, L, R, from, d);
else if(L >= mid) add(u << | , mid, r, L, R, from, d);
push_up(u);
} int main(){
//freopen("in.txt", "r", stdin);
while(~scanf("%I64d%I64d%I64d", &n, &a, &b)){
for(LL i = , x, y, z; i <= n; i++){
scanf("%I64d%I64d%I64d", &x, &y, &z);
t[i] = Point(x, y, z);
t[i + n] = Point(x, y + b, -z);
}
len = n << ;
sort(t + , t + len + , cmp1);
base = t[].y;
t[].y = ;
for(LL i = ; i <= len; i++){
if(t[i].y == base) t[i].y = t[i - ].y;
else{
base = t[i].y;
t[i].y = t[i - ].y + ;
}
}
LL high = t[len].y;
sort(t + , t + len + , cmp2);
base = ;
while(base <= len && t[base].x - t[].x < a) ++base;
build(, , high + );
for(LL i = ; i < base; i++) add(, , high + , t[i].y, t[i].y + , i, );
LL ans = seg[].maxl;
LL pre = ;
for(LL i = base; i < len + ; i++){
LL tp = pre;
while(tp < len + && t[i].x - t[tp].x >= a) ++tp;
for(LL j = pre; j < tp; j++) add(, , high + , t[j].y, t[j].y + , j, -);
LL tem = i;
while(i < len && t[i + ].x == t[i].x) ++i;
for(LL j = tem; j <= i; j++) add(, , high + , t[j].y, t[j].y + , j, );
ans = max(ans, seg[].maxl);
pre = tp;
}
printf("%I64d\n", ans);
}
return ;
}

poj2482 Stars in Your Window的更多相关文章

  1. POJ2482 Stars in Your Window(扫描线+区间最大+区间更新)

    Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw you? I stil ...

  2. POJ2482 Stars in Your Window 和 test20180919 区间最大值

    Stars in Your Window Language:Default Stars in Your Window Time Limit: 1000MS Memory Limit: 65536K T ...

  3. POJ2482 Stars in Your Window 题解

    Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw you? I stil ...

  4. Poj2482 Stars in Your Window(扫描线)

    题面 Poj 题解 下面内容引用自"李煜东 <算法竞赛进阶指南>"(对原文略有缩减,侵删): 因为矩形的大小固定,所以矩形可以由它的任意一个顶点唯一确定.我们可以考虑把 ...

  5. 【POJ2482】Stars in Your Window

    [POJ2482]Stars in Your Window 题面 vjudge 题解 第一眼还真没发现这题居然™是个扫描线 令点的坐标为\((x,y)\)权值为\(c\),则 若这个点能对结果有\(c ...

  6. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  7. 【POJ2482】【线段树】Stars in Your Window

    Description Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw ...

  8. 51nod 1208 && POJ 2482:Stars in Your Window

    1208 Stars in Your Window 题目来源: Poj 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  取消关注 整点上有N颗星星,每颗 ...

  9. POJ 2482 Stars in Your Window 线段树扫描线

    Stars in Your Window   Description Fleeting time does not blur my memory of you. Can it really be 4 ...

随机推荐

  1. Website English Comments

    幻灯新闻下方的广告 Slide news at the bottom of the advertisement 人才招聘 recruitment 左/右侧推荐区 The left/right side ...

  2. PostgreSQL Replication之第九章 与pgpool一起工作(7)

    9.7 处理故障转移和高可用 可以使用pgpool来解决的一些明显的问题是高可用性和故障转移.一般来讲,有使用pgpool或者不使用pgpool可以用来处理这些问题的各种方法. 9.7.1 使用Pos ...

  3. html 标签内部元素上下居中

    <div style="width: 200px; height: 200px; border: 1px solid red; line-height: 200px;"> ...

  4. [转] asp.net <%%>&<%#%>&<%=%>&<%@%>&<%$%>用法区别

    转自  参考 1.<% %>用来绑定后台代码 如: < % for(int i=0;i<100;i++) { Reaponse.Write(i.ToString()); } % ...

  5. oracle 新手遇到常见问题的解决办法

    可能照成以下问题的原因也许有很多种,但是就小白而言,我只记录自己学习过程中遇到的所有的问题.希望对一些新手 小白们有所帮助. 原因是 sys 不是sysdba 用户,你要将其作为sysdba 用户登录 ...

  6. scala2.10.x case classes cannot have more than 22 parameters

    问题 这个错误出现在case class参数超出22个的时候. case classes cannot have more than 22 parameters 在scala 2.11.x版本以下时c ...

  7. 夺命雷公狗---Thinkphp----14之前台的首页完善

    我们先来完成我们的首页部分,我们首页要先来完成到焊条部分和右侧的导航部分: 我们先来写控制器: 然后在右侧遍历头部遍历出我们所需要的数据: 因为我们的右侧是引入进来的,所以我们需要到右侧视图下进行遍历 ...

  8. PAT乙级 1003. 我要通过!(20)

    答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”. 得到“答案正确”的条件是: 1. ...

  9. ThinkPHP讲解(六)——添加数据

    添加数据到数据库有三种方式 第一种:使用数组添加 $model=D("Info"); //实例化对象 //添加数据的第一种方式:使用数组添加 //要添加的数组,必须是关联数组,ke ...

  10. beta-1阶段各组员的贡献分分配

    小组名称:nice! 小组成员:李权 于淼 刘芳芳 韩媛媛 宫丽君 项目内容:约跑app 分数分配规则 个人贡献分=基本贡献分*0.2+特殊贡献分*0.3+个人代码贡献量*0.5 其中 基本贡献分,特 ...