POJ #1042 Gone Fishing - WA by a DP solution. TODO
I used DP instead of Greedy. But got WA on PoJ, though it passed all web-searched cases. Maybe I have to use Greedy.
BTW: a careless modification introduced an error, and it took me 1+ hours to debug. DETAILS
Sth. about this DP solution: dp[iLake][nCurrTotalTime + currentLakeTime] = dp[iLake - 1][nCurrTotalTime] + getFish(iLake, nCurrTotalTime, currentLakeTime);
Anyway, this is the first 2D DP problem I worked out :)
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <vector>
using namespace std; #define Max(a, b) (a) > (b) ? (a) : (b)
#define MAX_LAKE 25
#define MAX_TIME (16*12) // We are at lake i now, with total time of tTtlLake spent on previous lakes,
// and we'd like to spend myt time on lake i -> how many fishes we can get from lake i?
int getFish(int i, int tTtlLake, int myt, int *accti, int *fi, int *di)
{
if (myt == ) return ; // If any left, get fishes by time myt
int ret = , left = fi[i];;
while (left > && myt > )
{
ret += left;
left -= di[i];
myt--;
}
return ret;
} void backtrack(int path[MAX_LAKE + ][MAX_TIME], int si, int sk, int n, int h)
{
bool bHasSolution = false;
int opath[MAX_LAKE + ] = { };
int actTtl = ;
while (si > && path[si][sk] != -)
{
opath[si] = path[si][sk];
actTtl += opath[si];
sk -= path[si][sk];
si--;
bHasSolution = true;
}
// Actual results less than h?
if (actTtl < h)
{
bool allAfterZero = true;
for (int i = ; i <= n; i++)
{
if (opath[i] != )
{
allAfterZero = false;
}
}
if (allAfterZero)
{
opath[] += h - actTtl;
}
}
if (!bHasSolution)
{
opath[] = h;
}
for (int i = ; i <= n; i++)
{
printf("%d", opath[i] * );
if (i < n) printf(", ");
}
printf("\n");
} void calc(int n, int h, int *fi, int *di, int *ti, int *accti)
{
// Reset
int dp[MAX_LAKE + ][MAX_TIME];
int path[MAX_LAKE + ][MAX_TIME];
memset( dp, , sizeof(int) * MAX_TIME * (MAX_LAKE + ));
memset(path, -, sizeof(int)* MAX_TIME * (MAX_LAKE + )); // dp[currentLakeIndex, currentTtlTimeOnLake] = currTtlFishCnt. Note: no time on the way included
// dp[i + 1, tTtl + t] = dp[i, tTtl] + f(fi(i + 1), t) int maxFish = , maxI, maxT;
for (int i = ; i <= n; i++)
{
// time on the way so far
int tWay = accti[i-]; for (int t = h; t >=; t--) // descending is necessary: it required more miniutes to spend as earlier as possible
{
if (i == && t > ) continue; int leftTime = h - t - tWay;
leftTime = leftTime < ? : leftTime; for (int k = ; k <= leftTime; k++) // k is how much time left in total
{
int newV = dp[i - ][t] + getFish(i, t, k, ti, fi, di);
if (newV > dp[i][t + k])
{
dp[i][t + k] = newV;
path[i][t + k] = k;
//printf("-putting %d to [%d][%d]\n", k, i, t + k); if (newV > maxFish)
{
maxFish = newV;
maxI = i; maxT = t + k;
}
}
}
}
} backtrack(path, maxI, maxT, n, h);
printf("Number of fish expected: %d\n\n", maxFish);
} int main()
{
int n, h;
while (scanf("%d", &n), (n != ))
{
scanf("%d", &h); // all in 5min-interval
h *= ; int fi[MAX_LAKE + ] = { }; // initial fish cnt
int di[MAX_LAKE + ] = { }; // decrease rate
int ti[MAX_LAKE] = { }; // travel time
int accti[MAX_LAKE] = { }; // travel time // Get Input
for (int i = ; i <= n; i ++) scanf("%d", fi + i);
for (int i = ; i <= n; i ++) scanf("%d", di + i);
for (int i = ; i <= n - ; i++)
{
scanf("%d", ti + i);
accti[i] = ti[i] + accti[i - ];
} calc(n, h, fi, di, ti, accti);
} return ;
}
POJ #1042 Gone Fishing - WA by a DP solution. TODO的更多相关文章
- POJ 1042 Gone Fishing( DP )
题意:小明打算做一个h((1 <= h <= 16))个小时钓鱼旅行.发现这里有n(2 <= n <= 25)个湖,而且所有的湖都在一条路的旁边.小明打算从第1个湖开始钓起,每 ...
- POJ 1042 Gone Fishing
题意:一个人要在n个湖中钓鱼,湖之间的路径是单向的,只能走1->2->3->...->n这一条线路,告诉你每个湖中一开始能钓到鱼的初始值,和每钓5分钟就减少的数量,以及湖之间的 ...
- POJ 1042 Gone Fishing (贪心)(刘汝佳黑书)
Gone Fishing Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 30281 Accepted: 9124 Des ...
- poj -- 1042 Gone Fishing(枚举+贪心)
题意: John现有h个小时的空闲时间,他打算去钓鱼.钓鱼的地方共有n个湖,所有的湖沿着一条单向路顺序排列(John每在一个湖钓完鱼后,他只能走到下一个湖继续钓),John必须从1号湖开始钓起,但是他 ...
- POJ 1042 Gone Fishing#贪心
(- ̄▽ ̄)-* #include<iostream> #include<cstdio> #include<cstring> using namespace std ...
- POJ 3249 Test for Job (拓扑排序+DP)
POJ 3249 Test for Job (拓扑排序+DP) <题目链接> 题目大意: 给定一个有向图(图不一定连通),每个点都有点权(可能为负),让你求出从源点走向汇点的路径上的最大点 ...
- leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)
leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution) On a staircase, the i-th step ...
- Poj/OpenJudge 1042 Gone Fishing
1.链接地址: http://bailian.openjudge.cn/practice/1042/ http://poj.org/problem?id=1042 2.题目: Gone Fishing ...
- Gone Fishing POJ 1042
#include<cstdio> #include<iostream> #include<algorithm> #include<cstring> us ...
随机推荐
- Core Java Volume I — 4.6. Object Construction
4.6. Object ConstructionYou have seen how to write simple constructors that define the initial state ...
- 八 JDBC
一 JDBC 简介 1. 作用:规避数据库的不同,为程序开发人员访问数据库提供统一的编程接口. 2. 具体作用:和数据库建立连接,发送 sql 语句,处理数据库返回的结果集. 3. 框架模式: 4. ...
- Intellij IDEA 创建Web项目并在Tomcat中部署运行
一.创建Web项目 1.File -> New Module,进入创建项目窗口 2.选择Java类型,在 Module name 处输入项目名,点击Next 3.勾选 Web Applica ...
- UI学习笔记---第三天
视图控制器 功能:视图大小变换 \布局视图\响应事件\检测处理内存警告\检测以及处理屏幕旋转\检测视图切换 MVC (model View controller) UIViewController是M ...
- SQL Server 合并表 union 和union all
如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字.union(或称为联合)的作用是将多个结果合并在一起显示出来. union和unio ...
- Codeforces Round #108 (Div. 2)
Codeforces Round #108 (Div. 2) C. Pocket Book 题意 给定\(N(N \le 100)\)个字符串,每个字符串长为\(M(M \le 100)\). 每次选 ...
- Android——GridView
layout文件: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:an ...
- C中的基本数据类型和变量
C语言中的数据类型 基本数据类型 1) 整型 (int %d) 2) 字符型 (char %c) 3) 浮点型 %d ①. 单精度浮点型(float) ②. 双精度浮点型(double) 2.指 ...
- dedecms的特性-----不完整
1.前后台分离彻底,连模板引擎都不同 2.多入口,但使用相同的基类--------每个入口都清晰
- Concurrent inserts on MyISAM and the binary log
Recently I had an interesting surprise with concurrent inserts into a MyISAM table. The inserts were ...