【递推】BZOJ 3930: [CQOI2015]选数
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
这道题有两种做法- -
1.递推
我们先设在一段区间[l,r]间选择n个元素,且它们的gcd为k*i的选择方案是f[i]。
显然,[l,r]内能被k*i整除的数有(R-L+1)^n个(R=r/(i*k),L=l/(i*k))。但是,有一些选择是这种(L,L,L,L,L,L,...L),一共有(R-L+1)种,同时还有最大公约数是k*i的倍数的,我们也要减去。
得到f[i]=(R-L+1)^n-(R-L+1)-f[k*i*a](a>=2 && k*i*a<=L-R+1)。
输出f[1]即可。
但是还有特殊情况。就是k在[l,r]间,所以这时f[1]++即可。
2.mobius反演
公式还是蛮容易的。。
mobius公式推导:http://lzy-foenix.gitcafe.io/2015/04/09/BZOJ-3930-CQOI2015-%E9%80%89%E6%95%B0/
关于阀值与μ的推导:http://www.cnblogs.com/Asm-Definer/p/4434601.html
PoPoQQQ的两者结合:http://blog.csdn.net/popoqqq/article/details/44917831(画质感人- -)
My Code
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define mod 1000000007 #define maxn 100000 using namespace std; long long f[maxn+]; long long qvod(long long x,long long k)
{
long long ans=;
while(k!=)
{
if(k&)ans=ans*x%mod;
x=x*x%mod;
k>>=;
}
return ans;
} int main()
{
int a,b,k,n;
scanf("%d%d%d%d",&n,&k,&a,&b);
int l=a/k,r=b/k;
if(a%k)l++;
for(int i=maxn;i>=;i--)
{
int L=l/i,R=r/i;
if(l%i)L++;
if(l<=r)
{
f[i]=qvod(R-L+,n);
f[i]=(f[i]-(R-L+)+mod)%mod;
for(int j=i*;j<=maxn;j+=i)f[i]=(f[i]-f[j]+mod)%mod;
}
}
if(l==)f[]++;
printf("%lld",(f[]+mod)%mod);
return ;
}
忽视奇怪的快速幂
【递推】BZOJ 3930: [CQOI2015]选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 3930: [CQOI2015]选数|递推|数论
题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
随机推荐
- Jackson - Features for configuring Java-to-JSON mapping
Following on/off features are defined in SerializationConfig.Feature (for Jackson 1.x), or Serializa ...
- secureFX中出现中文乱码修改方法
1. 找到SecureFX配置文件夹(选项--全局选项,常规下的配置文件夹),比如:D:\Program files\SecureCRT\DATA:2. 在配置文件夹下的Sessions子目录中,找到 ...
- Android OOM 解决方案
Out of Memory(内存溢出) 几乎是每个Android程序员都会遇到的事.在网上也能找到一大堆的解决方案,之前写过一篇<Android 内存溢出管理与测试>的博文.但感觉写得不是 ...
- Memcached学习(三)
通过Java客户端实现与Memcached的交互,Java客户端的实现了使用了开源的Memcached-Java-Client,开源地址在GitHub上. 如下是通过该开源库实现的Memcached交 ...
- Aisen仿新浪微博客户端项目源码
新浪目前已经限制了第三方微博的很多API接口,加上平常时间不够,所以后续可能不会面向产品的去维护Aisen,不过也有了一些新的方向,例如引入最新Android-support-library,在一个完 ...
- Dreamweaver标签库
.highlight .hll { background-color: #ffffcc } .highlight { background: #ffffff } .highlight .c { col ...
- 从客户端中检测到有潜在危险的 request
如题,当遇到这种情况该怎么办呢? 通常情况下一下2种解决方案就可以解决问题了: 解决方案一: 在.aspx文件头中加入这句: <%@ Page validateReques ...
- Contest1065 - 第四届“图灵杯”NEUQ-ACM程序设计竞赛(个人赛)B一个简单的问题
题目描述 这是一个三层的字母塔. 如何输出一个任意层数的字母塔呢? 输入 一个数字n(1<=n<=26),表示字母塔的层数 注意 此题多组输入 输出 n层的字母塔 样例输入 3 4 样例 ...
- 【转】TCP的SEQ和ACK的生成
TCP序列号和确认号详解 完整的PDF下载: 在网络分析中,读懂TCP序列号和确认号在的变化趋势,可以帮助我们学习TCP协议以及排查通讯故障,如通过查看序列号和确认号可以确定数据传输是否乱序.但我在查 ...
- 普通树(有根树)C++
对于普通树实现的细节包括 1 树结点的结构体 2 初始化及删除树结点(关注内存泄露) 3 递归先序遍历 4 通过关键值的查询操作,返回关键值的结点 5 凹入表实现 6 广义表实现 7 非递归先序遍历, ...