Description

  我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

  输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

  输出一个整数,为所求方案数。


  这道题有两种做法- -

  1.递推

  我们先设在一段区间[l,r]间选择n个元素,且它们的gcd为k*i的选择方案是f[i]。

  显然,[l,r]内能被k*i整除的数有(R-L+1)^n个(R=r/(i*k),L=l/(i*k))。但是,有一些选择是这种(L,L,L,L,L,L,...L),一共有(R-L+1)种,同时还有最大公约数是k*i的倍数的,我们也要减去。

  得到f[i]=(R-L+1)^n-(R-L+1)-f[k*i*a](a>=2 && k*i*a<=L-R+1)。

  输出f[1]即可。

  但是还有特殊情况。就是k在[l,r]间,所以这时f[1]++即可。

  2.mobius反演

  公式还是蛮容易的。。

  mobius公式推导:http://lzy-foenix.gitcafe.io/2015/04/09/BZOJ-3930-CQOI2015-%E9%80%89%E6%95%B0/

  关于阀值与μ的推导:http://www.cnblogs.com/Asm-Definer/p/4434601.html

  PoPoQQQ的两者结合:http://blog.csdn.net/popoqqq/article/details/44917831(画质感人- -)

  My Code

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define mod 1000000007 #define maxn 100000 using namespace std; long long f[maxn+]; long long qvod(long long x,long long k)
{
long long ans=;
while(k!=)
{
if(k&)ans=ans*x%mod;
x=x*x%mod;
k>>=;
}
return ans;
} int main()
{
int a,b,k,n;
scanf("%d%d%d%d",&n,&k,&a,&b);
int l=a/k,r=b/k;
if(a%k)l++;
for(int i=maxn;i>=;i--)
{
int L=l/i,R=r/i;
if(l%i)L++;
if(l<=r)
{
f[i]=qvod(R-L+,n);
f[i]=(f[i]-(R-L+)+mod)%mod;
for(int j=i*;j<=maxn;j+=i)f[i]=(f[i]-f[j]+mod)%mod;
}
}
if(l==)f[]++;
printf("%lld",(f[]+mod)%mod);
return ;
}

  忽视奇怪的快速幂

【递推】BZOJ 3930: [CQOI2015]选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  3. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. bzoj 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  6. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  7. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  8. 3930: [CQOI2015]选数|递推|数论

    题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

随机推荐

  1. Spring(3.2.3) - Beans(6): 作用域

    Spring 支持五种作用域,分别是 singleton.prototype.request.session 和 global session. 作用域 说明  singleton (默认作用域)单例 ...

  2. MongoDB - Installing MongoDB on Linux

    1. 下载最新稳定版本的安装包. [huey@huey mongodb]$ wget -c --no-check-certificate https://fossies.org/linux/misc/ ...

  3. response小结(五)—通过response实现请求重定向

    请求重定向指的是一个web资源收到客户端请求后,通知客户端去访问另外一个web资源,这称之为请求重定向.302状态码和location头即可实现重定向. 请求重定向最常见的应用场景就是用户登录. 下面 ...

  4. 第三十二篇、iOS 10开发

    1.语音识别 苹果官方在文档中新增了API   Speech,那么在以前我们处理语音识别非常的繁琐甚至很多时候可能需要借助于第三方框架处理,那么苹果推出了这个后,我们以后处理起来就非常的方便了,spe ...

  5. 慕课网上的Bootstrap学习(二)

    表单 首先<form role="form" class="form-horizontal"></form> ,创建一个水平显示的表单. ...

  6. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  7. 使用JavaScript实现简单的输入校验

    HTML页面代码: <!doctype html> <html lang="en"> <head> <meta charset=" ...

  8. 怎样在Android SDK 下查看应用程序输出日志的方法

          该文章源于安卓教程网(http://android.662p.com),转载时要注明文章的来自和地址,感谢你的支持. 在Android程序中可以使用 android.util.Log 类来 ...

  9. Servlet、Filter 生命周期

    Servlet作为JavaEE必须掌握的内容,Struts2通过使用Filter的功能实现了一个MVC的框架.因此掌握这Servlet以及Filter的生命周期显得非常重要. 1. Servlet的生 ...

  10. BootStrap中Affix控件的使用方法及如何保持布局的美观

    Affix是BootStrap中的一个很有用的控件,他能够监视浏览器的滚动条的位置并让你的导航始终都在页面的可视区域.一开始的时候,导航在页面中是普通的流式布局,占有文档中固定的位置,当页面滚动的时候 ...