D. Little Elephant and Broken Sorting
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The Little Elephant loves permutations of integers from 1 to n very much. But most of all he loves sorting them. To sort a permutation, the Little Elephant repeatedly swaps some elements. As a result, he must receive a permutation 1, 2, 3, ..., n.

This time the Little Elephant has permutation p1, p2, ..., pn. Its sorting program needs to make exactly m moves, during the i-th move it swaps elements that are at that moment located at the ai-th and the bi-th positions. But the Little Elephant's sorting program happened to break down and now on every step it can equiprobably either do nothing or swap the required elements.

Now the Little Elephant doesn't even hope that the program will sort the permutation, but he still wonders: if he runs the program and gets some permutation, how much will the result of sorting resemble the sorted one? For that help the Little Elephant find the mathematical expectation of the number of permutation inversions after all moves of the program are completed.

We'll call a pair of integers i, j (1 ≤ i < j ≤ n) an inversion in permutatuon p1, p2, ..., pn, if the following inequality holds: pi > pj.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 1000, n > 1) — the permutation size and the number of moves. The second line contains n distinct integers, not exceeding n — the initial permutation. Next m lines each contain two integers: the i-th line contains integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) — the positions of elements that were changed during the i-th move.

Output

In the only line print a single real number — the answer to the problem. The answer will be considered correct if its relative or absolute error does not exceed 10 - 6.

Examples
input
2 1
1 2
1 2
output
0.500000000
input
4 3
1 3 2 4
1 2
2 3
1 4
output
3.000000000

思路:对每一对位置i,j计算 f[i][j](p[i]>=p[j]的概率),当交换a,b位置时 对所有i有:f[i][a]=f[i][b]=(f[i][a]+f[i][b])/2,f[a][i]=f[b][i]=(f[a][i]+f[b][i])/2;
代码:
 #include<bits/stdc++.h>
//#include<regex>
#define db double
#include<vector>
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define inf 0x3f3f3f3f3f3f3f3f
#define fr(i, a, b) for(int i=a;i<=b;i++)
const int N = 1e3 + ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const db eps = 1e-;
const db PI = acos(-1.0);
using namespace std;
int p[N];
db f[N][N];
int main()
{
int n,m;
ci(n),ci(m);
for(int i=;i<=n;i++) ci(p[i]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=(p[i]>p[j]);//初始状态
while(m--)
{
int a,b;
ci(a),ci(b);
for(int i=;i<=n;i++){//更新
if(i!=a&&i!=b){
f[i][a]=f[i][b]=(f[i][a]+f[i][b])/;
f[a][i]=f[b][i]=(f[a][i]+f[b][i])/;
}
}
f[a][b]=f[b][a]=0.5;
}
db ans=;
for(int i=;i<=n;i++){//逆序数对和
for(int j=i+;j<=n;j++){
ans+=f[i][j];
}
}
pd(ans);
return ;
}

codeforces 258D的更多相关文章

  1. 【Codeforces 258D】 Count Good Substrings

    [题目链接] http://codeforces.com/contest/451/problem/D [算法] 合并后的字符串一定是形如"ababa","babab&qu ...

  2. Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp

    Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...

  3. CodeForces - 258D:Little Elephant and Broken Sorting(概率DP)

    题意:长度为n的排列,m次交换xi, yi,每个交换x,y有50%的概率不发生,问逆序数的期望  .n, m <= 1000 思路:我们只用维护大小关系,dp[i][j]表示位置i的数比位置j的 ...

  4. codeforces 258D DP

    D. Little Elephant and Broken Sorting time limit per test 2 seconds memory limit per test 256 megaby ...

  5. CodeForces - 258D Little Elephant and Broken Sorting

    Discription The Little Elephant loves permutations of integers from 1 to n very much. But most of al ...

  6. CodeForces 258D Little Elephant and Broken Sorting(期望)

    CF258D Little Elephant and Broken Sorting 题意 题意翻译 有一个\(1\sim n\)的排列,会进行\(m\)次操作,操作为交换\(a,b\).每次操作都有\ ...

  7. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  8. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  9. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

随机推荐

  1. 控制结构(10) 指令序列(opcode)

    // 上一篇:管道(pipeline) 发现问题 在一个正式项目的开发周期中,除了源代码版本控制外,还存在着项目的配置/编译/打包/发布等各种高频但非"核心"的脚本代码.职业程序员 ...

  2. 线程高级篇-读写锁ReentrantReadWriteLock

    转载原文:http://blog.csdn.net/john8169/article/details/53228016 读写锁: 分为读锁和写锁,多个读锁不互斥,读锁和写锁互斥,这是有JVM自己控制的 ...

  3. 201521123092《java程序设计》第三周学习总结

    #1. 本章学习总结 你对于本章知识的学习总结 #2. 书面作业 **Q1.  代码阅读 public class Test1 { private int i = 1;//这行不能修改 private ...

  4. 201521123048 《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. 2. 书面作业 1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自 ...

  5. 201521123092《java程序设计》第十一周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 2.1互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) ...

  6. iOS多线程编程

    废话不多说,直接上干货.先熟悉一下基本知识,然后讲一下常用的两种,NSOperation和GCD. 一.基础概念 进程: 狭义定义:进程是正在运行的程序的实例(an instance of a com ...

  7. js 第一课

    什么是JavaScript JavaScript是一种脚本语言,运行在网页上.无需安装编译器.只要在网页浏览器上就能运行 一般JavaScript与HTML合作使用. 例如 <html> ...

  8. android动画的实现过程

    先上自己的测试代码,有参考apidemo中的AnimationDrawable中的方法 public class AnimateActivity extends Activity { @Overrid ...

  9. 【JavaScript】设计模式-module模式及其改进

    写在前面 编写易于维护的代码,其中最重要的方面就是能够找到代码中重复出现的主题并优化他们,这也是设计模式最有价值的地方 说到这里...... <head first设计模式>里有一篇文章, ...

  10. 【转】Mapreduce部署与第三方依赖包管理

    Mapreduce部署是总会涉及到第三方包依赖问题,这些第三方包配置的方式不同,会对mapreduce的部署便捷性有一些影响,有时候还会导致脚本出错.本文介绍几种常用的配置方式: 1. HADOOP_ ...