题目描述

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

输入输出格式

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。[/b]

输入输出样例

输入样例#1:

6 3 1
aabaab
aab
输出样例#1:

2
输入样例#2:

6 3 2
aabaab
aab
输出样例#2:

7
输入样例#3:

6 3 3
aabaab
aab
输出样例#3:

7

说明

所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

题解:DP

令f[i][j][k]表示将A的前i个字母中取出k段,拼出B的前j个字母的方案数

不难推出f[i][j][k]=f[i-1][j][k]+Σf[i-x][j-x][k-1]  其中A[i-x+1...i]=B[j-x+1...j]。

可以看出这是时间复杂度为O(n*k*m^2),空间复杂度为O(n*m*k)的算法,极限数据下,会TLE+MLE。

所以怎么优化呢?

首先,考虑到f[i][j][k]只需要取到k-1和k,则采用滚动数据,将空间降低到O(n*m)。

其次,不难发现该方程中最主要的耗时在求Σf[i-x][j-x][k-1] ,则对于f[i][j],维护个斜线的前缀和(即Σf[i-x][j-x][k]的前缀和,本蒟蒻开了另一个数据s用于存储前缀数据),并且预处理出一个数据p[i][j],表示A[1..i]与B[1..j]的最长公共后缀长度,将时间复杂度降低至O(n*m*k)

初始为f[0][0][0]=1 答案为f[n][m]。

PS:自测考场上被卡常一个点,后来减少了一行取模命令后0.88s碾过....(没事少膜,会被+ns的)

 #include<iostream>
#include<cstdio>
#include<cstring>
#define N 1010
#define M 210
#define MOD 1000000007
#define L long long
using namespace std; char a[N]={},b[M]={};
L f[N][M]={},s[N][M]={},g[M][M]={};
int p[N][M]={},n,m,K; int get(int x,int y){
int i=;
while(a[x]==b[y]&&x&&y)
i++,x--,y--;
return i;
} int main(){
freopen("substring.in","r",stdin);
freopen("substring.out","w",stdout);
scanf("%d%d%d",&n,&m,&K);
scanf("%s",a+); scanf("%s",b+);
for(int i=;i<=n;i++){
s[i][]=;
for(int j=;j<=m;j++)
p[i][j]=get(i,j);
}
s[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
s[i][j]=(s[i-][j-]+f[i][j])%MOD;
}
for(int k=;k<=K;k++){
//memset(f,0,sizeof(f));
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
f[i][j]=f[i-][j];
int x=p[i][j]+;
L ss=s[i-][j-];
if(i-x>=&&j-x>=)
f[i][j]=(f[i-][j]+ss-s[i-x][j-x]+MOD)%MOD;
//ss=(ss-s[i-x][j-x]+MOD)%MOD;省了这行代码快了0.15s
else f[i][j]=(f[i-][j]+ss)%MOD;
}
}
memset(s,,sizeof(s));
for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
s[i][j]=(s[i-][j-]+f[i][j])%MOD;
}
}
cout<<f[n][m]<<endl;
}

【NOIP2015提高组】Day2 T2 子串的更多相关文章

  1. noip2015提高组day2解题报告

    1.跳石头 题目描述 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石( ...

  2. NOIP2015提高组复赛B 子串

    题目链接:https://ac.nowcoder.com/acm/contest/263/B 题目大意: 略 分析: 设preA(i)为字符串A中第1个字符到第i个字符构成的字符串. 设preB(i) ...

  3. NOIP2012提高组day2 T2借教室

    这题骗分可以骗到满分(可能是数据不太强给强行过去了) 这道题如果是按照题意去模拟用循环去修改区间的话只有45分,正解是二分+差分数组,骗分也是差分数组但是没有使用二分,时间复杂度在最坏的情况下是O(n ...

  4. 【DFS】【最短路】【spfa】【BFS】洛谷P2296 NOIP2014提高组 day2 T2 寻找道路

    存反图,从终点dfs一遍,记录下无法到达的点. 然后枚举这些记录的点,把他们的出边所连的点也全部记录. 以上这些点都是无法在最短路中出现的. 所以把两个端点都没被记录的边加进图里,跑spfa.BFS什 ...

  5. 洛谷 3959 宝藏 NOIP2017提高组Day2 T2

    [题解] 状压DP. f[i]表示现在的点是否连接的状态是i. #include<cstdio> #include<cstring> #include<algorithm ...

  6. 刷题总结——子串(NOIP2015提高组)

    题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...

  7. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  8. 【题解】NOIP2015提高组 复赛

    [题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...

  9. 18/9/16牛客网提高组Day2

    牛客网提高组Day2 T1 方差 第一眼看就知道要打暴力啊,然而并没有想到去化简式子... 可能因为昨晚没睡好,今天上午困死 导致暴力打了一个半小时,还不对... #include <algor ...

  10. [NOIP2015] 提高组 洛谷P2615 神奇的幻方

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

随机推荐

  1. 201521123024 《Java程序设计》第1周学习总结

    一.本周章学习总结 1.Java的版本迁移 2.运用eclipse和notepad++编写Java 3.对JDK,JRE,JVM有初步的了解 二.书面作业 1.为什么java程序可以跨平台运行?执行j ...

  2. 巧用 BootStrap --- 栅格系统(布局)轻松搞定网页响应式布局!

    摘要:Bootstrap 为我们提供了一套响应式.移动设备优先的流式栅格系统,合理的使用栅格系统将会使得网站页面布局变得更加简单,在设置了媒体查询之后,响应式网站也无需再单独写了.接下来我以Boots ...

  3. sscanf和正则表达式

    sscanf() - 从一个字符串中读进与指定格式相符的数据.      函数原型: Int sscanf( string str, string fmt, mixed var1, mixed var ...

  4. sehll 小脚本的应用

    1.模拟linnux登录shell #/bin/bash echo -n "login:" read name echo -n "password:" read ...

  5. 02函数-05-generator(ES6)

    generator(生成器)是ES6标准引入的新的数据类型. generator看上去像一个函数,但可以返回多次,除了return语句,还可以用yield返回多次.定义方式如下: function* ...

  6. docker应用笔记

    first install it: 首先安装: apt install docker.io 基本概念: 镜像:相当于虚拟机里的磁盘文件,里面有一套配置好的系统,应用程序 容器:相当于一个虚拟机实例,一 ...

  7. Kafka水位(high watermark)与leader epoch的讨论

    ~~~这是一篇有点长的文章,希望不会令你昏昏欲睡~~~ 本文主要讨论0.11版本之前Kafka的副本备份机制的设计问题以及0.11是如何解决的.简单来说,0.11之前副本备份机制主要依赖水位(或水印) ...

  8. ioc(Inversion of Control)控制反转和DI

    ioc意味着将你设计好的交给容器控制,而不是传统在你的对象中直接控制 谁控制了谁:传统的javaSE程序设计,我们直接在对象内部通过new进行创建对象,是程序主动去创建依赖对象:而ioc是有专门一个容 ...

  9. oracle数据库知识点

    1.oracle启动后的服务 1. Oracle ORCL VSS Writer Service:Oracle卷映射拷贝写入服务,VSS(Volume Shadow Copy Service)能够让存 ...

  10. poj3468树状数组的区间更新,区间求和

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 47174   ...