pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分和比较。

  数据的合并可以在列方向和行方向上进行,即下图所示的两种方式:

  

 pandas.merge和实例方法join实现的是图2列之间的连接,以DataFrame数据结构为例讲解,DataFrame1和DataFrame2必须要在至少一列上内容有重叠,index也好,columns也好,只要是有内容重叠的列即可,指定其中一列或几列作为连接的键,然后按照键,索引DataFrame2其他列上的的数据,添加DataFrame1中。例,以columns内容作为连接键:

import numpy as np
import pandas as pd
from pandas import Series,DataFrame
df1 = DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
'data1': range(7)})
df2 = DataFrame({ 'key': ['a', 'b', 'd'],
'data2': range(3),
'data3':range(3,6)})
DF1=pd.merge(df1, df2)

通过设置merge参数'on','left_on','right_on'可以指定用来连接的列(即关键的重复内容列),也可以将index作为连接键,只要传入left_index=True或right_index=True(或两个都传)来说明索引被用作连接键,例:

left1 = DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
'value': range(6)})
right1 = DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
lr=pd.merge(left1, right1, left_on='key', right_index=True)

  而实例方法join默认通过index来进行连接,例:

left2 = DataFrame([[1., 2.], [3., 4.], [5., 6.]], index=['a', 'c', 'e'],
columns=['Ohio', 'Nevada'])
right2 = DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
index=['b', 'c', 'd', 'e'], columns=['Missouri', 'Alabama'])
lr2=left2.join(right2, how='outer')

 join方法也可以通过列来连接,同样设置参数‘on’即可。

  上面介绍的函数实现的均是列之间的连接,要实现行之间的连接,要使用pd.concat方法,例:

s1 = Series([0, 1], index=['a', 'b'])
s2 = Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = Series([5, 6], index=['f', 'g'])
ss=pd.concat([s1, s2, s3])
st=pd.concat([s1,s2,s3],axis=1)

concat默认在axis=0上工作(沿着负y轴的方向),当设置axis=1时(沿着x轴的方向),它同时也可以实现列之间的连接,产生一个DataFrame。

  最后一个实例方法combine_first,它实现既不是行之间的连接,也不是列之间的连接,它在为数据“打补丁”:用参数对象中的数据为调用者对象的缺失数据“打补丁”。例:

a = Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
index=['f', 'e', 'd', 'c', 'b', 'a'])
b = Series(np.arange(len(a), dtype=np.float64),
index=['f', 'e', 'd', 'c', 'b', 'a'])
b[-1] = np.nan
c=b[:-2].combine_first(a[2:])
df1 = DataFrame({'a': [1., np.nan, 5., np.nan],
'b': [np.nan, 2., np.nan, 6.],
'c': range(2, 18, 4)})
df2 = DataFrame({'a': [5., 4., np.nan, 3., 7.],
'b': [np.nan, 3., 4., 6., 8.]})
df=df1.combine_first(df2)

  简单总结来说,通过merge和join合并的数据后数据的列变多,通过concat合并后的数据行列都可以变多(axis=1),而combine_first可以用一个数据填充另一个数据的缺失数据。

注:以上所有实验都是默认的“inner”连接方式(交集),可以通过“how”参数改变。

  

 

python pandas 合并数据函数merge join concat combine_first 区分的更多相关文章

  1. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  2. python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)

    # python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...

  3. pandas 合并数据

    1.  pandas 的merge,join 就不说了. 2.  神奇的:  concat      append 参考: PANDAS 数据合并与重塑(concat篇) 3.

  4. Python pandas检查数据中是否有NaN的几种方法

    Python pandas: check if any value is NaN in DataFrame # 查看每一列是否有NaN: df.isnull().any(axis=0) # 查看每一行 ...

  5. Pandas合并数据集之merge、join方法

    合并数据集 pandas.merge 可根据一个或多个键将不同DataFrame中的行连接起来. pandas.concat 可以沿着一条轴将多个对象堆叠到一起. combine_first merg ...

  6. [Python] Pandas 对数据进行查找、替换、筛选、排序、重复值和缺失值处理

    目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处 ...

  7. merge,join,concat

    merge交集 join并集 concat axis=0 竖着连 axis=1 横着连

  8. python pandas使用数据透视表

    1) 官网啰嗦这一堆, pandas.pivot_table函数中包含四个主要的变量,以及一些可选择使用的参数.四个主要的变量分别是数据源data,行索引index,列columns,和数值value ...

  9. python merge、concat合并数据集

    数据规整化:合并.清理.过滤 pandas和python标准库提供了一整套高级.灵活的.高效的核心函数和算法将数据规整化为你想要的形式! 本篇博客主要介绍: 合并数据集:.merge()..conca ...

随机推荐

  1. 2017最新PHP面试题

    这几天在面试,下面分享一下这几天面试所遇到的笔试题,目前还不打算工作,面试题会持续更新的,有些不想写答案了,有心的可以自己看着面试题查一下感觉记忆更深点.下面分享一下这几天遇到的php面试题. 掌贝面 ...

  2. javassist:字节码编辑器工具

    简介: javassist是一款可以在运行时生成字节码的工具,可以通过它来构造一个新的class对象.method对象,这个class是运行时生成的.可以通过简短的几行代码就可以生成一个新的class ...

  3. centOS 搭建pipelineDB docs

    #下载docs git clone https://github.com/pipelinedb/docs.git #安装python-sphinx &python-dev yum instal ...

  4. PPPOE拨号上网流程及密码窃取具体实现

    楼主学生党一枚,最近研究netkeeper有些许心得. 关于netkeeper是调用windows的rasdial来进行上网的东西,网上已经有一大堆,我就不赘述了. 本文主要讲解rasdial的部分核 ...

  5. 《RabbitMQ Tutorial》译文 第 4 章 路由

    原文来自 RabbitMQ 英文官网的教程(4.Routing),其示例代码采用了 .NET C# 语言. In the previous tutorial we built a simple log ...

  6. java 可变參数

    我们在某些特定的需求环境下,可能要对某一个方法中的參数进行一些操作,并且这些方法中的參数是不规定的,那么问题来了,我们该怎么办呢? java事实上就为我们考虑了这样的情况,那就是使用可变參数 可变參数 ...

  7. hdu 1233 还是畅通project(kruskal求最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. Highcharts使用CSV格式数据绘制图表

    Highcharts使用CSV格式数据绘制图表 CSV(Comma-Separated Values,逗号分隔值文本格式)是採用逗号切割的纯文本数据.通常情况下.每一个数据之间使用逗号切割,几个相关数 ...

  9. 入门Webpack

    ---恢复内容开始--- 什么是WebPack,为什么要使用它? 为什要使用WebPack 现今的很多网页其实可以看做是功能丰富的应用,它们拥有着复杂的JavaScript代码和一大堆依赖包.为了简化 ...

  10. Ubuntu 报错 sudo: unable to resolve host

    Ubuntu 在每次执行命令的时候,会报如下错误: $ sudo sudo: unable to resolve host iZ2zecsdy8flu603bmdg1bZ iZ2zecsdy8flu6 ...